Sommer Jakob, Dierksen Fiona, Zeevi Tal, Tran Anh Tuan, Avery Emily W, Mak Adrian, Malhotra Ajay, Matouk Charles C, Falcone Guido J, Torres-Lopez Victor, Aneja Sanjey, Duncan James, Sansing Lauren H, Sheth Kevin N, Payabvash Seyedmehdi
Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States.
Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany.
Front Artif Intell. 2024 Aug 1;7:1369702. doi: 10.3389/frai.2024.1369702. eCollection 2024.
Computed Tomography Angiography (CTA) is the first line of imaging in the diagnosis of Large Vessel Occlusion (LVO) strokes. We trained and independently validated end-to-end automated deep learning pipelines to predict 3-month outcomes after anterior circulation LVO thrombectomy based on admission CTAs.
We split a dataset of 591 patients into training/cross-validation (n = 496) and independent test set (n = 95). We trained separate models for outcome prediction based on admission "CTA" images alone, "CTA + Treatment" (including time to thrombectomy and reperfusion success information), and "CTA + Treatment + Clinical" (including admission age, sex, and NIH stroke scale). A binary (favorable) outcome was defined based on a 3-month modified Rankin Scale ≤ 2. The model was trained on our dataset based on the pre-trained ResNet-50 3D Convolutional Neural Network ("MedicalNet") and included CTA preprocessing steps.
We generated an ensemble model from the 5-fold cross-validation, and tested it in the independent test cohort, with receiver operating characteristic area under the curve (AUC, 95% confidence interval) of 70 (0.59-0.81) for "CTA," 0.79 (0.70-0.89) for "CTA + Treatment," and 0.86 (0.79-0.94) for "CTA + Treatment + Clinical" input models. A "Treatment + Clinical" logistic regression model achieved an AUC of 0.86 (0.79-0.93).
Our results show the feasibility of an end-to-end automated model to predict outcomes from admission and post-thrombectomy reperfusion success. Such a model can facilitate prognostication in telehealth transfer and when a thorough neurological exam is not feasible due to language barrier or pre-existing morbidities.
计算机断层扫描血管造影(CTA)是诊断大血管闭塞(LVO)性卒中的一线成像方法。我们训练并独立验证了端到端自动化深度学习管道,以根据入院时的CTA预测前循环LVO血栓切除术3个月后的预后。
我们将591例患者的数据集分为训练/交叉验证组(n = 496)和独立测试组(n = 95)。我们分别基于单独的入院“CTA”图像、“CTA+治疗”(包括血栓切除术时间和再灌注成功信息)以及“CTA+治疗+临床”(包括入院年龄、性别和美国国立卫生研究院卒中量表)训练用于预后预测 的单独模型。基于3个月改良Rankin量表≤2定义二元(良好)预后。该模型基于预训练的ResNet-50 3D卷积神经网络(“MedicalNet”)在我们的数据集上进行训练,并包括CTA预处理步骤。
我们从5折交叉验证中生成了一个集成模型,并在独立测试队列中对其进行测试,“CTA”输入模型的曲线下接受者操作特征面积(AUC,95%置信区间)为70(0.59 - 0.81),“CTA+治疗”为0.79(0.70 - 0.89),“CTA+治疗+临床”为0.86(0.79 - 0.94)。“治疗+临床”逻辑回归模型的AUC为0.86(0.79 - 0.93)。
我们的结果表明,端到端自动化模型预测入院时和血栓切除术后再灌注成功的预后是可行的。这样的模型可以促进远程医疗转诊中的预后评估,以及在由于语言障碍或既往疾病而无法进行全面神经学检查的情况下的预后评估。