Suppr超能文献

在线和内流混合用于时间分辨冷冻电镜。

On-grid and in-flow mixing for time-resolved cryo-EM.

机构信息

School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.

Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA.

出版信息

Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1233-1240. doi: 10.1107/S2059798321008810. Epub 2021 Sep 22.

Abstract

Time-resolved cryo-electron microscopy (TrEM) allows the study of proteins under non-equilibrium conditions on the millisecond timescale, permitting the analysis of large-scale conformational changes or assembly and disassembly processes. However, the technique is developing and there have been few comparisons with other biochemical kinetic studies. Using current methods, the shortest time delay is on the millisecond timescale (∼5-10 ms), given by the delay between sample application and vitrification, and generating longer time points requires additional approaches such as using a longer delay line between the mixing element and nozzle, or an incubation step on the grid. To compare approaches, the reaction of ATP with the skeletal actomyosin S1 complex was followed on grids prepared with a 7-700 ms delay between mixing and vitrification. Classification of the cryo-EM data allows kinetic information to be derived which agrees with previous biochemical measurements, showing fast dissociation, low occupancy during steady-state hydrolysis and rebinding once ATP has been hydrolysed. However, this rebinding effect is much less pronounced when on-grid mixing is used and may be influenced by interactions with the air-water interface. Moreover, in-flow mixing results in a broader distribution of reaction times due to the range of velocities in a laminar flow profile (temporal spread), especially for longer time delays. This work shows the potential of TrEM, but also highlights challenges and opportunities for further development.

摘要

时间分辨 cryo-EM(TrEM)允许在毫秒时间尺度上研究非平衡条件下的蛋白质,从而可以分析大规模构象变化或组装和拆卸过程。然而,该技术仍在不断发展,与其他生化动力学研究相比,相关研究还很少。使用当前的方法,最短的时间延迟在毫秒时间尺度(约 5-10ms),这是由样品施加和玻璃化之间的延迟决定的,而生成更长的时间点需要采用其他方法,例如在混合元件和喷嘴之间使用更长的延迟线,或在网格上进行孵育步骤。为了进行比较,我们在混合到玻璃化之间存在 7-700ms 延迟的网格上跟踪了 ATP 与骨骼肌肌球蛋白 S1 复合物的反应。对 cryo-EM 数据的分类允许得出与以前的生化测量结果一致的动力学信息,表明快速解离、在稳态水解过程中的低占有率以及一旦 ATP 水解就重新结合。然而,当使用网格上混合时,这种重新结合的效果不那么明显,并且可能受到与气-水界面相互作用的影响。此外,由于层流轮廓中的速度范围(时间扩展),在流混合中会导致反应时间的分布更广泛(时间扩展),特别是对于更长的时间延迟。这项工作展示了 TrEM 的潜力,但也突出了进一步发展的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d72/8489233/6cffb630cf89/d-77-01233-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验