Institute of High Performance Computing, A*STAR , Singapore 138632.
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams , Dalian University of Technology, Ministry of Education , Dalian 116024 , People's Republic of China.
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):46090-46100. doi: 10.1021/acsami.9b15654. Epub 2019 Nov 25.
Controllable synthesis of MoS with desired grain morphology via chemical vapor deposition (CVD) or physical vapor deposition (PVD) remains a challenge. Hence, it is important to understand polycrystalline growth of MoS and further provide guidelines for its CVD/PVD growth. Here, we formulate a kinetic Monte Carlo (kMC) model aiming at predicting the grain boundary (GB) formation in the CVD/PVD growth of polycrystalline MoS. In the kMC model, the grain growth is via kink nucleation and propagation, whose energetic parameters and initial nucleus details are either from first-principles calculations or from experiments. Using the kMC model, we perform extensive simulations to predict the GB formation by using two, three, four, and five initial nuclei and compare the simulation results with previous experimental results. The obtained GB morphologies are in an excellent agreement with those experimental results. These agreements suggest that the proposed kMC model can correctly capture the mechanism and kinetics of GB formation. In particular, we reveal that the formation of smooth/rough GB is dictated by the two growth vectors for the kink propagation at the two associated grain edges, which is validated by our high-resolution scanning transmission electron microscopy images for PVD growth of MoS grains. Besides, we have made predictions beyond reproducing experimental observations, including the growth with artificially designed nuclei, the morphology transformation by tuning the Mo and S sources, and the formation of high-quality single-crystalline monolayer MoS by using single-crystalline substrates with vicinal steps. Our kMC model may serve as a powerful predictive tool for the CVD/PVD growth of monolayer MoS with desired GB configurations.
通过化学气相沉积(CVD)或物理气相沉积(PVD)可控合成具有理想晶粒形态的 MoS 仍然是一个挑战。因此,了解多晶 MoS 的多晶生长并进一步为其 CVD/PVD 生长提供指导方针非常重要。在这里,我们制定了一个动力学蒙特卡罗(kMC)模型,旨在预测 CVD/PVD 生长多晶 MoS 中的晶界(GB)形成。在 kMC 模型中,晶粒生长是通过扭结成核和传播进行的,其能量参数和初始核细节要么来自第一性原理计算,要么来自实验。使用 kMC 模型,我们进行了广泛的模拟,以使用两个、三个、四个和五个初始核预测 GB 的形成,并将模拟结果与以前的实验结果进行比较。获得的 GB 形态与实验结果非常吻合。这些一致性表明,所提出的 kMC 模型可以正确捕捉 GB 形成的机制和动力学。特别是,我们揭示了平滑/粗糙 GB 的形成由两个关联晶粒边缘处扭结传播的两个生长矢量决定,这通过我们对 MoS 晶粒 PVD 生长的高分辨率扫描透射电子显微镜图像进行了验证。此外,我们还进行了超出再现实验观察的预测,包括使用人工设计的核进行生长、通过调整 Mo 和 S 源进行形态转变,以及使用具有倾斜台阶的单晶衬底形成高质量的单晶单层 MoS。我们的 kMC 模型可以作为具有所需 GB 配置的单层 MoS 的 CVD/PVD 生长的强大预测工具。