Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Nano Lett. 2023 May 24;23(10):4516-4523. doi: 10.1021/acs.nanolett.3c00935. Epub 2023 May 15.
We report a method to precisely control the atomic defects at grain boundaries (GBs) of monolayer MoS by vapor-liquid-solid (VLS) growth using sodium molybdate liquid alloys, which serve as growth catalysts to guide the formations of the thermodynamically most stable GB structure. The Mo-rich chemical environment of the alloys results in Mo-polar 5|7 defects with a yield exceeding 95%. The photoluminescence (PL) intensity of VLS-grown polycrystalline MoS films markedly exceeds that of the films, exhibiting abundant S 5|7 defects, which are kinetically driven by vapor-solid-solid growths. Density functional theory calculations indicate that the enhanced PL intensity is due to the suppression of nonradiative recombination of charged excitons with donor-type defects of adsorbed Na elements on S 5|7 defects. Catalytic liquid alloys can aid in determining a type of atomic defect even in various polycrystalline 2D films, which accordingly provides a technical clue to engineer their properties.
我们报告了一种通过使用钼酸钠液态合金的气-液-固(VLS)生长方法来精确控制单层 MoS 晶界(GB)原子缺陷的方法,该方法用作生长催化剂以引导形成热力学上最稳定的 GB 结构。合金的富 Mo 化学环境导致具有超过 95%产率的 Mo 极性 5|7 缺陷。VLS 生长的多晶 MoS 薄膜的光致发光(PL)强度明显超过了薄膜的强度,表现出丰富的 S 5|7 缺陷,这些缺陷是由气相-固相-固相生长动力学驱动的。密度泛函理论计算表明,增强的 PL 强度是由于对受激激子与吸附在 S 5|7 缺陷上的 Na 元素的施主型缺陷的非辐射复合的抑制。催化液态合金甚至可以帮助确定各种多晶二维薄膜中的一种原子缺陷类型,这为其性能的工程化提供了技术线索。