Näpflin Kathrin, O'Connor Emily A, Becks Lutz, Bensch Staffan, Ellis Vincenzo A, Hafer-Hahmann Nina, Harding Karin C, Lindén Sara K, Olsen Morten T, Roved Jacob, Sackton Timothy B, Shultz Allison J, Venkatakrishnan Vignesh, Videvall Elin, Westerdahl Helena, Winternitz Jamie C, Edwards Scott V
Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America.
Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden.
PeerJ. 2019 Nov 5;7:e8013. doi: 10.7717/peerj.8013. eCollection 2019.
Evolutionary genomics has recently entered a new era in the study of host-pathogen interactions. A variety of novel genomic techniques has transformed the identification, detection and classification of both hosts and pathogens, allowing a greater resolution that helps decipher their underlying dynamics and provides novel insights into their environmental context. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain, in particular in the synthesis and integration of concepts and findings across a variety of systems and different spatiotemporal and ecological scales. In this perspective we aim to highlight some of the commonalities and complexities across diverse studies of host-pathogen interactions, with a focus on ecological, spatiotemporal variation, and the choice of genomic methods used. We performed a quantitative review of recent literature to investigate links, patterns and potential tradeoffs between the complexity of genomic, ecological and spatiotemporal scales undertaken in individual host-pathogen studies. We found that the majority of studies used whole genome resolution to address their research objectives across a broad range of ecological scales, especially when focusing on the pathogen side of the interaction. Nevertheless, genomic studies conducted in a complex spatiotemporal context are currently rare in the literature. Because processes of host-pathogen interactions can be understood at multiple scales, from molecular-, cellular-, and physiological-scales to the levels of populations and ecosystems, we conclude that a major obstacle for synthesis across diverse host-pathogen systems is that data are collected on widely diverging scales with different degrees of resolution. This disparity not only hampers effective infrastructural organization of the data but also data granularity and accessibility. Comprehensive metadata deposited in association with genomic data in easily accessible databases will allow greater inference across systems in the future, especially when combined with open data standards and practices. The standardization and comparability of such data will facilitate early detection of emerging infectious diseases as well as studies of the impact of anthropogenic stressors, such as climate change, on disease dynamics in humans and wildlife.
进化基因组学最近在宿主 - 病原体相互作用的研究中进入了一个新时代。各种新颖的基因组技术已经改变了宿主和病原体的识别、检测和分类,提供了更高的分辨率,有助于解读它们潜在的动态变化,并为它们的环境背景提供新的见解。然而,对宿主 - 病原体相互作用的全面理解仍面临许多挑战,特别是在跨各种系统以及不同时空和生态尺度的概念和研究结果的综合与整合方面。从这个角度出发,我们旨在强调宿主 - 病原体相互作用的各种研究中的一些共性和复杂性,重点关注生态、时空变化以及所使用的基因组方法的选择。我们对近期文献进行了定量综述,以研究个体宿主 - 病原体研究中所涉及的基因组、生态和时空尺度的复杂性之间的联系、模式和潜在权衡。我们发现,大多数研究使用全基因组分辨率来在广泛的生态尺度上实现其研究目标,特别是当关注相互作用中的病原体方面时。然而,目前在复杂时空背景下进行的基因组研究在文献中很少见。由于宿主 - 病原体相互作用的过程可以在多个尺度上理解,从分子、细胞和生理尺度到种群和生态系统水平,我们得出结论,跨不同宿主 - 病原体系统进行综合研究的一个主要障碍是数据是在具有不同分辨率的广泛不同尺度上收集的。这种差异不仅阻碍了数据的有效基础设施组织,还影响了数据的粒度和可访问性。与基因组数据相关联存放在易于访问的数据库中的全面元数据将在未来允许对不同系统进行更大程度的推断,特别是当与开放数据标准和实践相结合时。此类数据的标准化和可比性将有助于早期发现新发传染病以及研究人为压力源(如气候变化)对人类和野生动物疾病动态的影响。