Suppr超能文献

网络基序的形式分析:生物程序中链接结构与功能的关系

Formal Analysis of Network Motifs Links Structure to Function in Biological Programs.

作者信息

Dunn Sara-Jane, Kugler Hillel, Yordanov Boyan

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):261-271. doi: 10.1109/TCBB.2019.2948157. Epub 2021 Feb 3.

Abstract

A recurring set of small sub-networks have been identified as the building blocks of biological networks across diverse organisms. These network motifs are associated with certain dynamic behaviors and define key modules that are important for understanding complex biological programs. Besides studying the properties of motifs in isolation, current algorithms typically evaluate the occurrence frequency of a specific motif in a given biological network compared to that in random networks of similar structure. However, it remains challenging to relate the structure of motifs to the observed and expected behavior of the larger, more complex network they are contained within. This problem is compounded as even the precise structure of most biological networks remains largely unknown. Previously, we developed a formal reasoning approach enabling the synthesis of biological networks capable of reproducing some experimentally observed behavior. Here, we extend this approach to allow reasoning over the requirement for specific network motifs as a way of explaining how these behaviors arise. We illustrate the approach by analyzing the motifs involved in sign-sensitive delay and pulse generation. We demonstrate the scalability and biological relevance of the approach by studying the previously defined networks governing myeloid differentiation, the yeast cell cycle, and naïve pluripotency in mouse embryonic stem cells, revealing the requirement for certain motifs in these systems.

摘要

一组反复出现的小子网络已被确定为不同生物体中生物网络的构建模块。这些网络基序与特定的动态行为相关联,并定义了对理解复杂生物程序至关重要的关键模块。除了单独研究基序的特性外,当前的算法通常会将给定生物网络中特定基序的出现频率与结构相似的随机网络中的出现频率进行比较。然而,将基序的结构与其所包含的更大、更复杂网络的观察到的和预期的行为联系起来仍然具有挑战性。由于大多数生物网络的精确结构在很大程度上仍然未知,这个问题变得更加复杂。此前,我们开发了一种形式推理方法,能够合成能够重现一些实验观察到的行为的生物网络。在这里,我们扩展了这种方法,允许对特定网络基序的需求进行推理,以此来解释这些行为是如何产生的。我们通过分析与信号敏感延迟和脉冲产生相关的基序来说明这种方法。我们通过研究先前定义的控制骨髓分化、酵母细胞周期和小鼠胚胎干细胞幼稚多能性的网络,证明了该方法的可扩展性和生物学相关性,揭示了这些系统中对某些基序的需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验