Suppr超能文献

聚类知识和分散能力可增强网络中的集体问题解决能力。

Clustering knowledge and dispersing abilities enhances collective problem solving in a network.

机构信息

The City University of New York-Queens College, Flushing, USA.

Northeastern University, Boston, Massachusetts, USA.

出版信息

Nat Commun. 2019 Nov 13;10(1):5146. doi: 10.1038/s41467-019-12650-3.

Abstract

Diversity tends to generate more and better ideas in social settings, ranging in scale from small-deliberative groups to tech-clusters and cities. Implicit in this research is that there are knowledge-generating benefits from diversity that comes from mixing different individuals, ideas, and perspectives. Here, we utilize agent-based modeling to examine the emergent outcomes resulting from the manipulation of how diversity is distributed and how knowledge is generated within communicative social structures. In the context of problem solving, we focus on cognitive diversity and its two forms: ability and knowledge. For diversity of ability, we find that local diversity (intermixing of different agents) performs best at all time scales. However, for diversity of knowledge, we find that local homogeneity performs best in the long-run, because it maintains global diversity, and thus the knowledge-generating ability of the group, for a longer period.

摘要

多样性往往会在社会环境中产生更多更好的想法,其规模从小型审议团体到技术集群和城市不等。这项研究隐含的意思是,多样性从不同的个体、想法和观点的混合中产生了知识生成的好处。在这里,我们利用基于代理的建模来研究如何分配多样性以及如何在交际社会结构中生成知识的操作所产生的突发结果。在解决问题的背景下,我们专注于认知多样性及其两种形式:能力和知识。对于能力的多样性,我们发现局部多样性(不同代理的混合)在所有时间尺度上表现最佳。然而,对于知识的多样性,我们发现局部同质性在长期内表现最佳,因为它保持了全局多样性,从而保持了群体的知识生成能力更长的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9791/6853876/04d7f78c54b5/41467_2019_12650_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验