Department of Cognitive and Information Sciences, University of California, Merced, CA, USA.
J R Soc Interface. 2022 Apr;19(189):20210915. doi: 10.1098/rsif.2021.0915. Epub 2022 Apr 27.
Search requires balancing exploring for more options and exploiting the ones previously found. Individuals foraging in a group face another trade-off: whether to engage in social learning to exploit the solutions found by others or to solitarily search for unexplored solutions. Social learning can better exploit learned information and decrease the costs of finding new resources, but excessive social learning can lead to over-exploitation and too little exploration for new solutions. We study how these two trade-offs interact to influence search efficiency in a model of collective foraging under conditions of varying resource abundance, resource density and group size. We modelled individual search strategies as Lévy walks, where a power-law exponent () controlled the trade-off between exploitative and explorative movements in individual search. We modulated the trade-off between individual search and social learning using a selectivity parameter that determined how agents responded to social cues in terms of distance and likely opportunity costs. Our results show that social learning is favoured in rich and clustered environments, but also that the benefits of exploiting social information are maximized by engaging in high levels of individual exploration. We show that selective use of social information can modulate the disadvantages of excessive social learning, especially in larger groups and when individual exploration is limited. Finally, we found that the optimal combination of individual exploration and social learning gave rise to trajectories with ≈ 2 and provide support for the general optimality of such patterns in search. Our work sheds light on the interplay between individual search and social learning, and has broader implications for collective search and problem-solving.
搜索需要平衡探索更多选项和利用先前发现的选项。在群体中觅食的个体面临另一种权衡:是参与社会学习以利用他人找到的解决方案,还是独自搜索未探索的解决方案。社会学习可以更好地利用所学信息并降低寻找新资源的成本,但过度的社会学习可能导致过度开发和对新解决方案的探索不足。我们研究了这两个权衡如何相互作用,以影响在资源丰富度、资源密度和群体规模不断变化的条件下集体觅食模型中的搜索效率。我们将个体搜索策略建模为 Lévy 漫步,其中幂律指数 ( ) 控制个体搜索中探索性和开发性运动之间的权衡。我们使用选择性参数来调节个体搜索和社会学习之间的权衡,该参数确定了个体根据距离和可能的机会成本对社会线索的反应方式。我们的研究结果表明,社会学习在丰富和聚类的环境中是有利的,但通过进行高水平的个体探索,利用社会信息的好处也可以最大化。我们表明,选择性地利用社会信息可以减轻过度社会学习的弊端,尤其是在较大的群体中且个体探索受到限制时。最后,我们发现个体探索和社会学习的最佳组合产生了轨迹, ≈ 2,并为这种搜索模式的一般最优性提供了支持。我们的工作阐明了个体搜索和社会学习之间的相互作用,并对集体搜索和问题解决具有更广泛的意义。