Suppr超能文献

精细调整:一种受生物启发的用于机器学习模型个性化的算法。

Fine-Pruning: A biologically inspired algorithm for personalization of machine learning models.

作者信息

Bingham Joseph, Zonouz Saman, Aran Dvir

机构信息

Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Patterns (N Y). 2025 Apr 29;6(5):101242. doi: 10.1016/j.patter.2025.101242. eCollection 2025 May 9.

Abstract

Neural networks have long strived to emulate the learning capabilities of the human brain. While deep neural networks (DNNs) draw inspiration from the brain in neuron design, their training methods diverge from biological foundations. Backpropagation, the primary training method for DNNs, requires substantial computational resources and fully labeled datasets, presenting major bottlenecks in development and application. This work demonstrates that by returning to biomimicry, specifically mimicking how the brain learns through pruning, we can solve various classical machine learning problems while utilizing orders of magnitude fewer computational resources and no labels. Our experiments successfully personalized multiple speech recognition and image classification models, including ResNet50 on ImageNet, resulting in an increased sparsity of approximately 70% while simultaneously improving model accuracy to around 90%, all without the limitations of backpropagation. This biologically inspired approach offers a promising avenue for efficient, personalized machine learning models in resource-constrained environments.

摘要

神经网络长期以来一直致力于模仿人类大脑的学习能力。虽然深度神经网络(DNN)在神经元设计上借鉴了大脑的灵感,但其训练方法却与生物学基础有所不同。反向传播作为DNN的主要训练方法,需要大量的计算资源和完全标注的数据集,这在开发和应用中构成了主要瓶颈。这项工作表明,通过回归仿生学,特别是模仿大脑通过修剪进行学习的方式,我们可以解决各种经典机器学习问题,同时使用数量级更少的计算资源且无需标注。我们的实验成功地对多个语音识别和图像分类模型进行了个性化定制,包括在ImageNet上的ResNet50,在没有反向传播限制的情况下,模型稀疏度提高了约70%,同时模型准确率提高到了约90%。这种受生物学启发的方法为在资源受限环境中构建高效、个性化的机器学习模型提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c72/12142609/797ad89ea54d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验