Suppr超能文献

生物标志物验证研究中净效益指标的统计推断。

Statistical inference for net benefit measures in biomarker validation studies.

作者信息

Marsh Tracey L, Janes Holly, Pepe Margaret S

机构信息

Fred Hutchinson Cancer Research Center, Seattle, Washington.

出版信息

Biometrics. 2020 Sep;76(3):843-852. doi: 10.1111/biom.13190. Epub 2019 Nov 28.

Abstract

Referral strategies based on risk scores and medical tests are commonly proposed. Direct assessment of their clinical utility requires implementing the strategy and is not possible in the early phases of biomarker research. Prior to late-phase studies, net benefit measures can be used to assess the potential clinical impact of a proposed strategy. Validation studies, in which the biomarker defines a prespecified referral strategy, are a gold standard approach to evaluating biomarker potential. Uncertainty, quantified by a confidence interval, is important to consider when deciding whether a biomarker warrants an impact study, does not demonstrate clinical potential, or that more data are needed. We establish distribution theory for empirical estimators of net benefit and propose empirical estimators of variance. The primary results are for the most commonly employed estimators of net benefit: from cohort and unmatched case-control samples, and for point estimates and net benefit curves. Novel estimators of net benefit under stratified two-phase and categorically matched case-control sampling are proposed and distribution theory developed. Results for common variants of net benefit and for estimation from right-censored outcomes are also presented. We motivate and demonstrate the methodology with examples from lung cancer research and highlight its application to study design.

摘要

基于风险评分和医学检测的转诊策略经常被提出。对其临床效用进行直接评估需要实施该策略,而这在生物标志物研究的早期阶段是不可能的。在晚期研究之前,净效益指标可用于评估所提议策略的潜在临床影响。验证研究(其中生物标志物定义了预先指定的转诊策略)是评估生物标志物潜力的金标准方法。在决定生物标志物是否值得进行影响研究、是否未显示出临床潜力或是否需要更多数据时,由置信区间量化的不确定性是需要考虑的重要因素。我们建立了净效益经验估计量的分布理论,并提出了方差的经验估计量。主要结果针对最常用的净效益估计量:来自队列和非匹配病例对照样本的估计量,以及针对点估计和净效益曲线的估计量。提出了分层两阶段和分类匹配病例对照抽样下净效益的新估计量,并发展了分布理论。还给出了净效益常见变体以及来自右删失结局估计的结果。我们用肺癌研究的例子来激发并展示该方法,并强调其在研究设计中的应用。

相似文献

5

引用本文的文献

3
Bayesian Decision Curve Analysis With Bayesdca.使用Bayesdca进行贝叶斯决策曲线分析。
Stat Med. 2024 Dec 30;43(30):6042-6058. doi: 10.1002/sim.10277. Epub 2024 Dec 1.
10
Bayesian Statistics for Medical Devices: Progress Since 2010.贝叶斯统计学在医疗器械中的应用:2010 年以来的进展。
Ther Innov Regul Sci. 2023 May;57(3):453-463. doi: 10.1007/s43441-022-00495-w. Epub 2023 Mar 3.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验