Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.
Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 6;375(1789):20190060. doi: 10.1098/rstb.2019.0060. Epub 2019 Nov 18.
Humans and songbirds share the key trait of vocal learning, manifested in speech and song, respectively. Striking analogies between these behaviours include that both are acquired during developmental critical periods when the brain's ability for vocal learning peaks. Both behaviours show similarities in the overall architecture of their underlying brain areas, characterized by cortico-striato-thalamic loops and direct projections from cortical neurons onto brainstem motor neurons that control the vocal organs. These neural analogies extend to the molecular level, with certain song control regions sharing convergent transcriptional profiles with speech-related regions in the human brain. This evolutionary convergence offers an unprecedented opportunity to decipher the shared neurogenetic underpinnings of vocal learning. A key strength of the songbird model is that it allows for the delineation of activity-dependent transcriptional changes in the brain that are driven by learned vocal behaviour. To capitalize on this advantage, we used previously published datasets from our laboratory that correlate gene co-expression networks to features of learned vocalization within and after critical period closure to probe the functional relevance of genes implicated in language. We interrogate specific genes and cellular processes through converging lines of evidence: human-specific evolutionary changes, intelligence-related phenotypes and relevance to vocal learning gene co-expression in songbirds. This article is part of the theme issue 'What can animal communication teach us about human language?'
人类和鸣禽都具有发声学习的关键特征,分别表现在言语和鸣叫声中。这两种行为之间存在显著的相似性,包括它们都是在大脑发声学习能力达到高峰的发育关键期习得的。这两种行为在其潜在大脑区域的整体结构上表现出相似性,其特征是皮质-纹状体-丘脑回路以及皮质神经元直接投射到控制发声器官的脑干运动神经元。这些神经学的相似性延伸到分子水平,某些与鸣叫控制相关的区域与人类大脑中与言语相关的区域具有趋同的转录特征。这种进化上的趋同提供了一个前所未有的机会来解码发声学习的共同神经遗传基础。鸣禽模型的一个关键优势在于,它允许在大脑中描绘出由习得的发声行为驱动的活性依赖性转录变化。为了利用这一优势,我们使用了来自我们实验室的先前发表的数据集,这些数据集将基因共表达网络与关键期关闭前后的习得发声特征相关联,以探究与语言相关的基因的功能相关性。我们通过多种证据来探究特定的基因和细胞过程:人类特有的进化变化、与智力相关的表型以及与鸣禽发声学习基因共表达的相关性。本文是主题为“动物交流能教会我们什么是人类语言?”的特刊的一部分。