Suppr超能文献

结合扩散模型与监测数据进行社区尺度空气质量特征分析

Combining Dispersion Modeling and Monitoring Data for Community-Scale Air Quality Characterization.

作者信息

Isakov Vlad, Arunachalam Saravanan, Baldauf Richard, Breen Michael, Deshmukh Parikshit, Hawkins Andy, Kimbrough Sue, Krabbe Stephen, Naess Brian, Serre Marc, Valencia Alejandro

机构信息

Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711, USA.

Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA.

出版信息

Atmosphere (Basel). 2019;10(10):1-610. doi: 10.3390/atmos10100610.

Abstract

Spatially and temporally resolved air quality characterization is critical for community-scale exposure studies and for developing future air quality mitigation strategies. Monitoring-based assessments can characterize local air quality when enough monitors are deployed. However, modeling plays a vital role in furthering the understanding of the relative contributions of emissions sources impacting the community. In this study, we combine dispersion modeling and measurements from the Kansas City TRansportation local-scale Air Quality Study (KC-TRAQS) and use data fusion methods to characterize air quality. The KC-TRAQS study produced a rich dataset using both traditional and emerging measurement technologies. We used dispersion modeling to support field study design and analysis. In the study design phase, the presumptive placement of fixed monitoring sites and mobile monitoring routes have been corroborated using a research screening tool C-PORT to assess the spatial and temporal coverage relative to the entire study area extent. In the analysis phase, dispersion modeling was used in combination with observations to help interpret the KC-TRAQS data. We extended this work to use data fusion methods to combine observations from stationary, mobile measurements, and dispersion model estimates.

摘要

对社区尺度的暴露研究以及制定未来空气质量缓解策略而言,空间和时间分辨的空气质量特征描述至关重要。当部署了足够多的监测器时,基于监测的评估能够描述当地的空气质量。然而,模型在进一步理解影响社区的排放源的相对贡献方面发挥着至关重要的作用。在本研究中,我们将扩散模型与堪萨斯城交通局部尺度空气质量研究(KC - TRAQS)的测量结果相结合,并使用数据融合方法来描述空气质量。KC - TRAQS研究使用传统和新兴测量技术生成了丰富的数据集。我们使用扩散模型来支持实地研究的设计与分析。在研究设计阶段,使用研究筛选工具C - PORT来评估相对于整个研究区域范围的空间和时间覆盖情况,从而证实了固定监测站点和移动监测路线的假定位置。在分析阶段,扩散模型与观测结果相结合,以帮助解释KC - TRAQS数据。我们扩展了这项工作,使用数据融合方法来合并来自固定、移动测量以及扩散模型估计的观测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14e/6859648/470ba2509602/nihms-1541431-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验