文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于银的等离子体纳米粒子及其在生物传感中的应用。

Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing.

机构信息

Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.

Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.

出版信息

Biosensors (Basel). 2019 Jun 10;9(2):78. doi: 10.3390/bios9020078.


DOI:10.3390/bios9020078
PMID:31185689
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6627098/
Abstract

The localized surface plasmon resonance (LSPR) property of metallic nanoparticles is widely exploited for chemical and biological sensing. Selective biosensing of molecules using functionalized nanoparticles has become a major research interdisciplinary area between chemistry, biology and material science. Noble metals, especially gold (Au) and silver (Ag) nanoparticles, exhibit unique and tunable plasmonic properties; the control over these metal nanostructures size and shape allows manipulating their LSPR and their response to the local environment. In this review, we will focus on Ag-based nanoparticles, a metal that has probably played the most important role in the development of the latest plasmonic applications, owing to its unique properties. We will first browse the methods for AgNPs synthesis allowing for controlled size, uniformity and shape. Ag-based biosensing is often performed with coated particles; therefore, in a second part, we will explore various coating strategies (organics, polymers, and inorganics) and their influence on coated-AgNPs properties. The third part will be devoted to the combination of gold and silver for plasmonic biosensing, in particular the use of mixed Ag and AuNPs, , AgAu alloys or Ag-Au core@shell nanoparticles will be outlined. In the last part, selected examples of Ag and AgAu-based plasmonic biosensors will be presented.

摘要

金属纳米粒子的局域表面等离子体共振(LSPR)性质被广泛用于化学和生物传感。使用功能化纳米粒子进行选择性分子生物传感已经成为化学、生物学和材料科学之间的主要跨学科研究领域。贵金属,特别是金(Au)和银(Ag)纳米粒子,表现出独特和可调谐的等离子体特性;对这些金属纳米结构的尺寸和形状的控制可以操纵它们的 LSPR 及其对局部环境的响应。在这篇综述中,我们将重点介绍基于 Ag 的纳米粒子,由于其独特的性质,这种金属可能在最新等离子体应用的发展中发挥了最重要的作用。我们将首先浏览允许控制尺寸、均匀性和形状的 AgNPs 合成方法。基于 Ag 的生物传感通常使用涂层颗粒进行;因此,在第二部分,我们将探索各种涂层策略(有机物、聚合物和无机物)及其对涂层 AgNPs 性能的影响。第三部分将致力于金和银在等离子体生物传感中的结合,特别是混合 Ag 和 AuNPs、AgAu 合金或 Ag-Au 核@壳纳米粒子的使用将被概述。在最后一部分,将介绍基于 Ag 和 AgAu 的等离子体生物传感器的一些实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/f3a2250431a5/biosensors-09-00078-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/95bcd5e6d57a/biosensors-09-00078-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/01374281bb15/biosensors-09-00078-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/32460558ad5b/biosensors-09-00078-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/9be8ff3edfe4/biosensors-09-00078-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/3ea6eb5b7e3d/biosensors-09-00078-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/a72e04b53e7f/biosensors-09-00078-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/e064ed9f091d/biosensors-09-00078-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/fb7f8d874b78/biosensors-09-00078-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/79f60623958a/biosensors-09-00078-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/b23a64bbd60b/biosensors-09-00078-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/030da5a9d49b/biosensors-09-00078-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/e4ec3a9517b8/biosensors-09-00078-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/c293f2a5c46e/biosensors-09-00078-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/889ab05dd4f1/biosensors-09-00078-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/7efcb1bffe69/biosensors-09-00078-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/629a5211c21c/biosensors-09-00078-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/1b2dd209b0c3/biosensors-09-00078-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/14cee7d2b4d4/biosensors-09-00078-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/e927ad058575/biosensors-09-00078-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/eb900861871c/biosensors-09-00078-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/61d46a1e2efe/biosensors-09-00078-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/f0e54739efe5/biosensors-09-00078-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/d19bba44ab4f/biosensors-09-00078-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/88c697d22f58/biosensors-09-00078-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/46ede7285755/biosensors-09-00078-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/d5359dd026aa/biosensors-09-00078-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/2257b0c4d1b0/biosensors-09-00078-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/6fd4d1b9fde9/biosensors-09-00078-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/4ec4d4a5dc54/biosensors-09-00078-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/f3a2250431a5/biosensors-09-00078-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/95bcd5e6d57a/biosensors-09-00078-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/01374281bb15/biosensors-09-00078-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/32460558ad5b/biosensors-09-00078-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/9be8ff3edfe4/biosensors-09-00078-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/3ea6eb5b7e3d/biosensors-09-00078-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/a72e04b53e7f/biosensors-09-00078-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/e064ed9f091d/biosensors-09-00078-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/fb7f8d874b78/biosensors-09-00078-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/79f60623958a/biosensors-09-00078-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/b23a64bbd60b/biosensors-09-00078-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/030da5a9d49b/biosensors-09-00078-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/e4ec3a9517b8/biosensors-09-00078-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/c293f2a5c46e/biosensors-09-00078-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/889ab05dd4f1/biosensors-09-00078-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/7efcb1bffe69/biosensors-09-00078-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/629a5211c21c/biosensors-09-00078-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/1b2dd209b0c3/biosensors-09-00078-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/14cee7d2b4d4/biosensors-09-00078-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/e927ad058575/biosensors-09-00078-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/eb900861871c/biosensors-09-00078-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/61d46a1e2efe/biosensors-09-00078-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/f0e54739efe5/biosensors-09-00078-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/d19bba44ab4f/biosensors-09-00078-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/88c697d22f58/biosensors-09-00078-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/46ede7285755/biosensors-09-00078-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/d5359dd026aa/biosensors-09-00078-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/2257b0c4d1b0/biosensors-09-00078-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/6fd4d1b9fde9/biosensors-09-00078-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/4ec4d4a5dc54/biosensors-09-00078-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ee/6627098/f3a2250431a5/biosensors-09-00078-g030.jpg

相似文献

[1]
Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing.

Biosensors (Basel). 2019-6-10

[2]
Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.

J Phys Chem B. 2006-10-5

[3]
Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.

ACS Appl Mater Interfaces. 2019-12-5

[4]
Plasmonic properties of silver nanostructures coated with an amorphous silicon-carbon alloy and their applications for sensitive sensing of DNA hybridization.

Analyst. 2011-3-24

[5]
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

Acc Chem Res. 2008-12

[6]
Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold-Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing.

ACS Appl Mater Interfaces. 2019-1-3

[7]
Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

Carbohydr Polym. 2015-10-9

[8]
Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

J Am Chem Soc. 2012-7-9

[9]
Self-assembled plasmonic nanostructures.

Chem Soc Rev. 2014-3-6

[10]
Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

Langmuir. 2012-2-22

引用本文的文献

[1]
Silver nanoparticles as next-generation antimicrobial agents: mechanisms, challenges, and innovations against multidrug-resistant bacteria.

Front Cell Infect Microbiol. 2025-8-14

[2]
Structural engineering of silver nanoparticles for enhanced photoacoustic imaging.

Nanoscale Adv. 2025-8-21

[3]
Tailoring innovative silver nanoparticles for modern medicine: The importance of size and shape control and functional modifications.

Mater Today Bio. 2025-7-9

[4]
Synthesis of Silver Nanoparticles by Chemical Vapor Deposition Method and Its Application in Laser Desorption/Ionization Techniques.

Nanomaterials (Basel). 2025-6-23

[5]
Real-Time Intracellular Monitoring of miRNA Dynamics during Induced Pluripotent Stem Cell Neuronal Differentiation via Plasmon-Enhanced Nanobiosensing.

Nano Lett. 2025-7-2

[6]
Nanoplasmonic Biosensors: A Comprehensive Overview and Future Prospects.

Int J Nanomedicine. 2025-5-7

[7]
A fluorescent probe based on a luminescent metal-organic framework for the sensitive detection of histamine in aquatic products.

RSC Adv. 2025-5-8

[8]
Unlocking the Potential of (Curtis): Botanical Overview, Therapeutic Applications, and Nanotechnological Advances.

Pharmaceutics. 2025-3-26

[9]
Entropy-Mediated Nanoparticle Cellular Uptake.

Small Sci. 2023-11-27

[10]
Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity-A 2024 Update.

ACS Omega. 2025-2-18

本文引用的文献

[1]
Silica-Coated Plasmonic Metal Nanoparticles in Action.

Adv Mater. 2018-5-7

[2]
Nanoplasmonic Sensing from the Human Vision Perspective.

Anal Chem. 2018-3-22

[3]
Synthesis and characterization of chitosan-coated titanate nanotubes: towards a new safe nanocarrier.

Dalton Trans. 2017-11-14

[4]
Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition.

Spectrochim Acta A Mol Biomol Spectrosc. 2017-9-1

[5]
A novel colorimetric biosensor based on non-aggregated Au@Ag core-shell nanoparticles for methamphetamine and cocaine detection.

Talanta. 2017-7-3

[6]
Inflection Point of the Localized Surface Plasmon Resonance Peak: A General Method to Improve the Sensitivity.

ACS Sens. 2017-2-24

[7]
Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain.

Nanoscale. 2017-3-17

[8]
Silver Nanowire-IZO-Conducting Polymer Hybrids for Flexible and Transparent Conductive Electrodes for Organic Light-Emitting Diodes.

Sci Rep. 2016-10-5

[9]
Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing.

Analyst. 2016-8-2

[10]
The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line.

Toxicol Lett. 2016-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索