Suppr超能文献

在缺乏测试集的情况下ROC分析中对分类器性能的高估:来自模拟和意大利CARATkids验证的证据

Overrating Classifier Performance in ROC Analysis in the Absence of a Test Set: Evidence from Simulation and Italian CARATkids Validation.

作者信息

Cilluffo Giovanna, Fasola Salvatore, Ferrante Giuliana, Montalbano Laura, Baiardini Ilaria, Indinnimeo Luciana, Viegi Giovanni, Fonseca Joao A, La Grutta Stefania

机构信息

Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy.

Department of Economical, Business and Statistical Science, University of Palermo, Palermo, Italy.

出版信息

Methods Inf Med. 2019 Dec;58(S 02):e27-e42. doi: 10.1055/s-0039-1693732. Epub 2019 Nov 19.

Abstract

BACKGROUND

The use of receiver operating characteristic curves, or "ROC analysis," has become quite common in biomedical research to support decisions. However, sensitivity, specificity, and misclassification rates are still often estimated using the training sample, overlooking the risk of overrating the test performance.

METHODS

A simulation study was performed to highlight the inferential implications of splitting (or not) the dataset into training and test set. The normality assumption was made for the classifier given the disease status, and the Youden's criterion considered for the detection of the optimal cutoff. Then, an ROC analysis with sample split was applied to assess the discriminant validity of the Italian version of the Control of Allergic Rhinitis and Asthma Test (CARATkids) questionnaire for children with asthma and rhinitis, for which recent studies may have reported liberal performance estimates.

RESULTS

The simulation study showed that both single split and cross-validation (CV) provided unbiased estimators of sensitivity, specificity, and misclassification rate, therefore allowing computation of confidence intervals. For the Italian CARATkids questionnaire, the misclassification rate estimated by fivefold CV was 0.22, with 95% confidence interval 0.14 to 0.30, indicating an acceptable discriminant validity.

CONCLUSIONS

Splitting into training and test set avoids overrating the test performance in ROC analysis. Validated through this method, the Italian CARATkids is valid for assessing disease control in children with asthma and rhinitis.

摘要

背景

使用接受者操作特征曲线(即“ROC分析”)在生物医学研究中已相当普遍,以辅助决策。然而,灵敏度、特异度和错误分类率仍常常使用训练样本进行估计,而忽略了高估测试性能的风险。

方法

进行了一项模拟研究,以突出将数据集划分为训练集和测试集(或不划分)的推断意义。假设给定疾病状态下分类器服从正态分布,并考虑约登指数来检测最佳截断点。然后,应用带有样本划分的ROC分析来评估意大利版变应性鼻炎和哮喘控制测试(CARATkids)问卷对哮喘和鼻炎患儿的判别效度,近期研究可能对该问卷的性能估计较为宽松。

结果

模拟研究表明,单次划分和交叉验证(CV)都能提供灵敏度、特异度和错误分类率的无偏估计量,因此可以计算置信区间。对于意大利版CARATkids问卷,五重交叉验证估计的错误分类率为0.22,95%置信区间为0.14至0.30,表明其判别效度可接受。

结论

在ROC分析中划分为训练集和测试集可避免高估测试性能。通过该方法验证后,意大利版CARATkids问卷可有效评估哮喘和鼻炎患儿的疾病控制情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验