ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
Sci Rep. 2019 Nov 20;9(1):17217. doi: 10.1038/s41598-019-53140-2.
The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.
耐辐射球菌是一种对多种胁迫条件(如辐射)具有高度抗性的细菌。根据几项报告,锰在应激保护中起着关键作用,而在这个过程中,高 Mn/Fe 比是必不可少的。然而,锰和铁的动员以及在氧化应激下受饥饿条件影响的 DNA 结合蛋白的作用仍然是悬而未决的问题。我们使用基于同步加速器的纳米分辨率 X 射线荧光成像技术,通过 dps 敲除突变体,研究了应激时元素重定位及其对 Dps 蛋白存在的依赖性。我们表明,锰、钙和磷从类似于电子致密颗粒的富元素区域被动员到细胞质和细胞膜中,这是一种依赖 Dps 的方式。此外,铁从隔膜区域向细胞质释放,影响细胞分裂,特别是在隔膜形成过程中。这些机制由 Dps1 和 Dps2 协调,它们在金属稳态中起着关键作用,并与耐辐射球菌对活性氧的耐受性有关。