Caffrey Brian J, Pedrazo-Tardajos Adrián, Liberti Emanuela, Gaunt Benjamin, Kim Judy S, Kirkland Angus I
The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 OQX, UK.
Nuffield Department of Women's & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
Small. 2024 Dec;20(50):e2402871. doi: 10.1002/smll.202402871. Epub 2024 Sep 6.
Recent advances in liquid phase scanning transmission electron microscopy (LP-STEM) have enabled the study of dynamic biological processes at nanometer resolutions, paving the way for live-cell imaging using electron microscopy. However, this technique is often hampered by the inherent thickness of whole cell samples and damage from electron beam irradiation. These restrictions degrade image quality and resolution, impeding biological interpretation. Using graphene encapsulation, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) spectroscopy to mitigate these issues provides unprecedented levels of intracellular detail in aqueous specimens. This study demonstrates the potential of LP-STEM to examine and identify internal cellular structures in thick biological samples. Specifically, it highlights the use of LP-STEM to investigate the radiation resistant, gram-positive bacterium, Deinococcus radiodurans using various imaging techniques.
液相扫描透射电子显微镜(LP-STEM)的最新进展使得在纳米分辨率下研究动态生物过程成为可能,为使用电子显微镜进行活细胞成像铺平了道路。然而,这项技术常常受到全细胞样品固有厚度以及电子束辐照损伤的阻碍。这些限制会降低图像质量和分辨率,妨碍生物学解读。使用石墨烯封装、扫描透射电子显微镜(STEM)和能量色散X射线(EDX)光谱来缓解这些问题,能够在水性样本中提供前所未有的细胞内细节水平。本研究展示了LP-STEM在检查和识别厚生物样品中内部细胞结构方面的潜力。具体而言,它突出了使用LP-STEM通过各种成像技术研究耐辐射革兰氏阳性细菌——耐辐射球菌的情况。