John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nature. 2019 Dec;576(7785):132-137. doi: 10.1038/s41586-019-1773-3. Epub 2019 Nov 20.
Multiplexed RNA sequencing in individual cells is transforming basic and clinical life sciences. Often, however, tissues must first be dissociated, and crucial information about spatial relationships and communication between cells is thus lost. Existing approaches to reconstruct tissues assign spatial positions to each cell, independently of other cells, by using spatial patterns of expression of marker genes-which often do not exist. Here we reconstruct spatial positions with little or no prior knowledge, by searching for spatial arrangements of sequenced cells in which nearby cells have transcriptional profiles that are often (but not always) more similar than cells that are farther apart. We formulate this task as a generalized optimal-transport problem for probabilistic embedding and derive an efficient iterative algorithm to solve it. We reconstruct the spatial expression of genes in mammalian liver and intestinal epithelium, fly and zebrafish embryos, sections from the mammalian cerebellum and whole kidney, and use the reconstructed tissues to identify genes that are spatially informative. Thus, we identify an organization principle for the spatial expression of genes in animal tissues, which can be exploited to infer meaningful probabilities of spatial position for individual cells. Our framework ('novoSpaRc') can incorporate prior spatial information and is compatible with any single-cell technology. Additional principles that underlie the cartography of gene expression can be tested using our approach.
单细胞多组学 RNA 测序正在改变基础和临床生命科学。然而,通常情况下,组织首先必须被解离,因此细胞之间的空间关系和通讯的关键信息就会丢失。现有的重建组织的方法通过使用标记基因的空间表达模式来为每个细胞分配空间位置,而这些模式往往不存在。在这里,我们通过搜索具有转录谱的测序细胞的空间排列来重建空间位置,这些细胞的转录谱通常(但不总是)比距离较远的细胞更相似。我们将这个任务表述为一个概率嵌入的广义最优传输问题,并推导出一种有效的迭代算法来解决它。我们重建了哺乳动物肝脏和肠上皮、果蝇和斑马鱼胚胎、哺乳动物小脑和整个肾脏切片中基因的空间表达,并使用重建的组织来识别具有空间信息的基因。因此,我们确定了动物组织中基因空间表达的组织原则,可以利用该原则推断单个细胞的有意义的空间位置概率。我们的框架('novoSpaRc')可以整合先验的空间信息,并且与任何单细胞技术兼容。使用我们的方法可以测试表达图谱的基础的其他原则。