Laboratory for Theoretical Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
Faculty of Medicine, Kyoto University, Kyoto, Japan.
Nat Commun. 2021 Jun 17;12(1):3731. doi: 10.1038/s41467-021-24014-x.
Decoding spatial transcriptomes from single-cell RNA sequencing (scRNA-seq) data has become a fundamental technique for understanding multicellular systems; however, existing computational methods lack both accuracy and biological interpretability due to their model-free frameworks. Here, we introduce Perler, a model-based method to integrate scRNA-seq data with reference in situ hybridization (ISH) data. To calibrate differences between these datasets, we develop a biologically interpretable model that uses generative linear mapping based on a Gaussian mixture model using the Expectation-Maximization algorithm. Perler accurately predicts the spatial gene expression of Drosophila embryos, zebrafish embryos, mammalian liver, and mouse visual cortex from scRNA-seq data. Furthermore, the reconstructed transcriptomes do not over-fit the ISH data and preserved the timing information of the scRNA-seq data. These results demonstrate the generalizability of Perler for dataset integration, thereby providing a biologically interpretable framework for accurate reconstruction of spatial transcriptomes in any multicellular system.
从单细胞 RNA 测序 (scRNA-seq) 数据中解码空间转录组已成为理解多细胞系统的基本技术;然而,由于其无模型框架,现有的计算方法既缺乏准确性,也缺乏生物学可解释性。在这里,我们介绍了 Perler,这是一种基于模型的方法,可以将 scRNA-seq 数据与参考原位杂交 (ISH) 数据集成。为了校准这些数据集之间的差异,我们开发了一种生物学上可解释的模型,该模型使用基于高斯混合模型的生成线性映射,并使用期望最大化算法。Perler 可以从 scRNA-seq 数据中准确预测果蝇胚胎、斑马鱼胚胎、哺乳动物肝脏和小鼠视觉皮层的空间基因表达。此外,重建的转录组不会过度拟合 ISH 数据,并保留了 scRNA-seq 数据的时间信息。这些结果表明 Perler 可用于数据集集成,从而为任何多细胞系统中空间转录组的准确重建提供了一个生物学上可解释的框架。