Suppr超能文献

乳腺癌患者内乳淋巴结侵犯的渗透倾向:解剖学特征及其对靶区勾画的影响。

Infiltration tendency of internal mammary lymph nodes involvement in patients with breast cancer: anatomical characteristics and implications for target delineation.

机构信息

Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, 197# Ruijin Er Road, Outpatient Building, Shanghai, China.

Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, 197# Ruijin Er Road, Building 7, 3rd floor, Shanghai, China.

出版信息

Radiat Oncol. 2019 Nov 21;14(1):208. doi: 10.1186/s13014-019-1412-z.

Abstract

BACKGROUND

Despite increasing clinical data suggest that internal mammary node (IMN) irradiation would improve local-regional control and overall survival in breast cancer, its role remains controversial due to increased risk of cardiac and pulmonary toxicity. The current study aims to determine the high risk areas of IMN metastases by collecting and analyzing the axial imaging of IMN involvement, in order to optimize IMN delineation for breast cancer.

METHODS

Breast cancer patients with IMN involvement were retrospectively identified from single-center database. All available imaging modalities including thoracic CT, breast MRI, ultrasound and PET/CT were used to diagnose IMN metastases. Anatomical characteristics from axial imaging, including distribution of involved ribs and distance from the internal mammary vessels (IMV), were collected for each metastatic IMN. What's more,the natural infiltration tendency of IMNs from IMV was calculated in this study.

RESULTS

In total, 83 metastatic IMNs from 70 breast cancer patients (initial diagnosed:34 and recurrence: 36) were located from axial CT image in this study. The second intercostal space was the most likely involved in patients with single(n = 35, 53.0%) and multiple intercostal space (n = 31, 47.0%) involvement. The percentage of including IMN with a 5 mm, 6 mm and 7 mm medial/lateral distance to the IMV were 75.9% (63/83), 89.2.6% (74/83) and 92.3% (77/83) respectively. While in maximal dorsal/ventral distance, nearly 95% of the nodes were encompassed into 6 mm depth to the IMV. Over 65% of IMN adenopathy (32/49,65.3%) were found to have a growth direction close to the sternum. By retrospective reviewing diagnostic reports, MRI demonstrated a high diagnostic performance in diagnosis of IMN disease (90.3%, 28/31), while CT had a higher misdiagnosis rate (22/63, 34.9%). The diagnostic efficiency of IMN could be improved if different methods were combined.

CONCLUSIONS

For patients with indications of prophylactic IMN irradiation, a 7 mm medial and 6 mm dorsal distance to the IMV on axial CT would be optimal to cover the clinical volume of IMN; and it would be reasonable to extend clinical tumor volume (CTV) coverage towards sternum for patients with evident IMN disease. Multi-imaging modalities are recommended to improve the diagnostic specificity and sensitivity of IMN metastases.

摘要

背景

尽管越来越多的临床数据表明内乳淋巴结(IMN)照射可以提高乳腺癌的局部区域控制率和总生存率,但由于心脏和肺毒性风险增加,其作用仍存在争议。本研究旨在通过收集和分析 IMN 受累的轴位影像学资料,确定 IMN 转移的高危区域,从而优化乳腺癌的 IMN 勾画。

方法

从单中心数据库中回顾性地确定了 IMN 受累的乳腺癌患者。所有可用的影像学检查方法,包括胸部 CT、乳腺 MRI、超声和 PET/CT,均用于诊断 IMN 转移。为每个转移性 IMN 收集了轴位影像学的解剖特征,包括受累肋骨的分布和与内乳血管(IMV)的距离。此外,本研究还计算了 IMV 处 IMN 的自然浸润倾向。

结果

本研究共从 83 例转移性 IMN 中确定了 70 例乳腺癌患者(初诊:34 例,复发:36 例)的轴位 CT 图像。在单间隙(n=35,53.0%)和多间隙(n=31,47.0%)受累患者中,最可能受累的是第二肋间隙。与 IMV 内侧/外侧距离为 5mm、6mm 和 7mm 的 IMN 所占百分比分别为 75.9%(63/83)、89.2.6%(74/83)和 92.3%(77/83)。而在最大背/腹距离方面,近 95%的节点被包含在 IMV 深度 6mm 以内。超过 65%的 IMN 淋巴结病(32/49,65.3%)的生长方向接近胸骨。通过回顾性查阅诊断报告,MRI 在诊断 IMN 疾病方面表现出较高的诊断效能(90.3%,28/31),而 CT 的误诊率较高(22/63,34.9%)。如果联合使用不同的方法,IMN 的诊断效率可以提高。

结论

对于有预防性 IMN 照射指征的患者,轴位 CT 上 IMV 内侧 7mm、背侧 6mm 的距离将是覆盖 IMN 临床体积的最佳选择;对于有明显 IMN 疾病的患者,向胸骨方向扩展临床肿瘤体积(CTV)覆盖范围是合理的。建议使用多种影像学方法提高 IMN 转移的诊断特异性和敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8fd/6868832/03ce924b7260/13014_2019_1412_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验