Suppr超能文献

热化学水分解与直接空气捕获CO的整合。

Integration of thermochemical water splitting with CO direct air capture.

作者信息

Brady Casper, Davis Mark E, Xu Bingjun

机构信息

Center for Catalytic Science and Technology, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716.

Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

出版信息

Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25001-25007. doi: 10.1073/pnas.1915951116. Epub 2019 Nov 21.

Abstract

Renewable production of fuels and chemicals from direct air capture (DAC) of CO is a highly desired goal. Here, we report the integration of the DAC of CO with the thermochemical splitting of water to produce CO, H, O, and electricity. The produced CO and H can be converted to value-added chemicals via existing technologies. The integrated process uses thermal solar energy as the only energy input and has the potential to provide the dual benefits of combating anthropogenic climate change while creating renewable chemicals. A sodium-manganese-carbonate (Mn-Na-CO) thermochemical water-splitting cycle that simultaneously drives renewable H production and DAC of CO is demonstrated. An integrated reactor is designed and fabricated to conduct all steps of the thermochemical water-splitting cycle that produces close to stoichiometric amounts (∼90%) of H and O (illustrated with 6 consecutive cycles). The ability of the cycle to capture 75% of the ∼400 ppm CO from air is demonstrated also. A technoeconomic analysis of the integrated process for the renewable production of H, O, and electricity, as well as DAC of CO shows that the proposed scheme of solar-driven H production from thermochemical water splitting coupled with CO DAC may be economically viable under certain circumstances.

摘要

通过直接空气捕获(DAC)二氧化碳来可再生地生产燃料和化学品是一个非常理想的目标。在此,我们报告了将二氧化碳的DAC与水的热化学分解相结合,以生产一氧化碳、氢气、氧气和电力。所产生的一氧化碳和氢气可以通过现有技术转化为增值化学品。该集成工艺以太阳能热作为唯一的能量输入,有潜力在对抗人为气候变化的同时创造可再生化学品,带来双重效益。展示了一种同时驱动可再生氢气生产和二氧化碳DAC的钠 - 锰 - 碳酸盐(Mn-Na-CO)热化学水分解循环。设计并制造了一个集成反应器,以进行热化学水分解循环的所有步骤,该循环能产生接近化学计量比数量(约90%)的氢气和氧气(通过6个连续循环进行说明)。还展示了该循环从空气中捕获约400 ppm二氧化碳中75%的能力。对用于可再生生产氢气、氧气和电力以及二氧化碳DAC的集成工艺进行的技术经济分析表明,所提出的由热化学水分解耦合二氧化碳DAC来太阳能驱动生产氢气的方案在某些情况下可能在经济上可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36c/6911180/654859344d4f/pnas.1915951116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验