Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):656-667. doi: 10.1073/pnas.1912049116. Epub 2019 Nov 21.
A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on and that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in mutant rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.
自闭症谱系障碍(ASD)遗传学面临的一个主要挑战是大量且不断增加的候选风险基因和功能未知的基因变异。在这里,我们使用 系统地在体内对与 ASD 相关的基因进行功能特征分析。我们使用定制的机器视觉系统,量化了 135 个品系中的 26 种表型,这些品系中的每个品系都携带一个 ASD 相关基因的同源基因突变。我们确定了数百种基因型-表型关系,从严重的发育迟缓和运动不协调到感觉和学习行为的细微缺陷。我们通过表型谱的相似性对基因进行聚类,并使用上位性分析发现了以 和 为中心的平行网络,这些网络是机械敏感性过度反应和习惯学习受损的基础。然后,我们利用我们的体内功能测定数据来评估错义变体的效应。野生型 NLG-1 在 突变体中的表达挽救了它们的感觉和学习障碍。测试保守的 ASD 相关神经粘连变异的拯救能力显示出尽管适当的亚细胞定位,但功能丧失程度不同。最后,我们使用 CRISPR-Cas9 辅助的吲哚乙酸诱导降解来确定 NLG-1 发育缺失引起的表型异常可以通过成年表达来逆转。这项工作描绘了 ASD 相关基因的表型景观,提供了体内变异功能测定,并为 ASD 提供了潜在的治疗靶点。