Institute of Physics, University of Szczecin, ul. Wielkopolska 15, 70-451, Szczecin, Poland.
Faculty of Marine Engineering, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500, Szczecin, Poland.
Radiat Environ Biophys. 2020 Mar;59(1):79-87. doi: 10.1007/s00411-019-00822-0. Epub 2019 Nov 21.
This study is based on our already published experimental data (Kowalska et al. in Radiat Environ Biophys 58:99-108, 2019) and is devoted to modeling of chromosome aberrations in human lymphocytes induced by 22.1 MeV/u B ions, 199 MeV/u C ions, 150 MeV and spread-out Bragg peak (SOBP) proton beams as well as by Co γ rays. The curvature of the dose-effect curves determined by the linear-quadratic model was considered in the frame of a simple analytical approach taking into account increase in the irradiation dose due to overlapping interaction regions of ion tracks. The model enabled to estimate effective interaction radius which could be compared with the physical expectations. The results were also compared to the Amorphous Track Structure Model of Katz which allows to get some additional information about the ion track structure. The analysis showed that the curvature of the experimental dose-effect curves mainly results from highly efficient repair processes of the DNA damage.
本研究基于我们已发表的实验数据(Kowalska 等人,Radiat Environ Biophys 58:99-108, 2019),致力于模拟 22.1 MeV/u B 离子、199 MeV/u C 离子、150 MeV 和扩展布拉格峰(SOBP)质子束以及 Co γ 射线诱导的人淋巴细胞染色体畸变。在线性二次模型确定的剂量-效应曲线的曲率,考虑到由于离子轨迹重叠相互作用区域而增加的照射剂量,在简单的分析方法的框架内进行了考虑。该模型能够估计有效相互作用半径,可与物理预期进行比较。结果还与 Katz 的无定形轨迹结构模型进行了比较,该模型可以提供有关离子轨迹结构的一些附加信息。分析表明,实验剂量-效应曲线的曲率主要是由于 DNA 损伤的高效修复过程。