Chen Yongxin, Georgiou Tryphon T, Tannenbaum Allen
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA 92697, USA.
IEEE Access. 2018;7:6269-6278. doi: 10.1109/ACCESS.2018.2889838. Epub 2018 Dec 27.
We introduce an optimal mass transport framework on the space of Gaussian mixture models. These models are widely used in statistical inference. Specifically, we treat Gaussian mixture models as a submanifold of probability densities equipped with the Wasserstein metric. The topology induced by optimal transport is highly desirable and natural because, in contrast to total variation and other metrics, the Wasserstein metric is weakly continuous (i.e., convergence is equivalent to convergence of moments). Thus, our approach provides natural ways to compare, interpolate and average Gaussian mixture models. Moreover, the approach has low computational complexity. Different aspects of the framework are discussed and examples are presented for illustration purposes.
我们在高斯混合模型空间中引入了一个最优质量传输框架。这些模型在统计推断中被广泛使用。具体而言,我们将高斯混合模型视为配备瓦瑟斯坦度量的概率密度子流形。由最优传输诱导的拓扑非常理想且自然,因为与总变差和其他度量不同,瓦瑟斯坦度量是弱连续的(即收敛等同于矩的收敛)。因此,我们的方法提供了比较、插值和平均高斯混合模型的自然方式。此外,该方法具有低计算复杂度。我们讨论了该框架的不同方面,并给出示例用于说明。