Prados Adrian, Espinoza Gonzalo, Moreno Luis, Barber Ramon
RoboticsLab, Universidad Carlos III de Madrid, 28911 Madrid, Spain.
Biomimetics (Basel). 2025 Jan 17;10(1):64. doi: 10.3390/biomimetics10010064.
Motion primitives are a highly useful and widely employed tool in the field of Learning from Demonstration (LfD). However, obtaining a large number of motion primitives can be a tedious process, as they typically need to be generated individually for each task to be learned. To address this challenge, this work presents an algorithm for acquiring robotic skills through automatic and unsupervised segmentation. The algorithm divides tasks into simpler subtasks and generates motion primitive libraries that group common subtasks for use in subsequent learning processes. Our algorithm is based on an initial segmentation step using a heuristic method, followed by probabilistic clustering with Gaussian Mixture Models. Once the segments are obtained, they are grouped using Gaussian Optimal Transport on the Gaussian Processes (GPs) of each segment group, comparing their similarities through the energy cost of transforming one GP into another. This process requires no prior knowledge, it is entirely autonomous, and supports multimodal information. The algorithm enables generating trajectories suitable for robotic tasks, establishing simple primitives that encapsulate the structure of the movements to be performed. Its effectiveness has been validated in manipulation tasks with a real robot, as well as through comparisons with state-of-the-art algorithms.
运动基元是示范学习(LfD)领域中一种非常有用且广泛应用的工具。然而,获取大量运动基元可能是一个繁琐的过程,因为通常需要为每个要学习的任务单独生成它们。为应对这一挑战,这项工作提出了一种通过自动和无监督分割来获取机器人技能的算法。该算法将任务分解为更简单的子任务,并生成运动基元库,将常见子任务分组以供后续学习过程使用。我们的算法基于使用启发式方法的初始分割步骤,随后使用高斯混合模型进行概率聚类。一旦获得片段,就使用高斯最优传输对每个片段组的高斯过程(GPs)进行分组,通过将一个高斯过程转换为另一个高斯过程的能量成本来比较它们的相似性。这个过程不需要先验知识,完全是自主的,并且支持多模态信息。该算法能够生成适合机器人任务的轨迹,建立封装要执行运动结构的简单基元。它的有效性已在真实机器人的操作任务中得到验证,以及通过与最先进算法的比较得到验证。