Leypoldt John Kenneth, Goldstein Jacques, Pouchoulin Dominique, Harenski Kai
Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland.
Baxter World Trade SPRL, Braine l'Alleud, Belgium.
Artif Organs. 2020 May;44(5):488-496. doi: 10.1111/aor.13601. Epub 2019 Dec 15.
Extracorporeal carbon dioxide (CO ) removal (ECCO R) facilitates the use of low tidal volumes during protective or ultraprotective mechanical ventilation when managing patients with acute respiratory distress syndrome (ARDS); however, the rate of ECCO R required to avoid hypercapnia remains unclear. We calculated ECCO R rate requirements to maintain arterial partial pressure of CO (PaCO ) at clinically desirable levels in mechanically ventilated ARDS patients using a six-compartment mathematical model of CO and oxygen (O ) biochemistry and whole-body transport with the inclusion of an ECCO R device for extracorporeal veno-venous removal of CO . The model assumes steady state conditions. Model compartments were lung capillary blood, arterial blood, venous blood, post-ECCO R venous blood, interstitial fluid and tissue cells, with CO and O distribution within each compartment; biochemistry included equilibrium among bicarbonate and non-bicarbonate buffers and CO and O binding to hemoglobin to elucidate Bohr and Haldane effects. O consumption and CO production rates were assumed proportional to predicted body weight (PBW) and adjusted to achieve reported arterial partial pressure of O and a PaCO level of 46 mmHg at a tidal volume of 7.6 mL/kg PBW in the absence of an ECCO R device based on average data from LUNG SAFE. Model calculations showed that ECCO R rates required to achieve mild permissive hypercapnia (PaCO of 46 mmHg) at a ventilation frequency or respiratory rate of 20.8/min during mechanical ventilation increased when tidal volumes decreased from 7.6 to 3 mL/kg PBW. Higher ECCO2R rates were required to achieve normocapnia (PaCO2 of 40 mmHg). Model calculations also showed that required ECCO2R rates were lower when ventilation frequencies were increased from 20.8/min to 26/min. The current mathematical model predicts that ECCO2R rates resulting in clinically desirable PaCO2 levels at tidal volumes of 5-6 mL/kg PBW can likely be achieved in mechanically ventilated ARDS patients with current technologies; use of ultraprotective tidal volumes (3-4 mL/kg PBW) may be challenging unless high mechanical ventilation frequencies are used.
体外二氧化碳(CO₂)清除(ECCO₂R)有助于在治疗急性呼吸窘迫综合征(ARDS)患者时,在保护性或超保护性机械通气期间使用低潮气量;然而,避免高碳酸血症所需的ECCO₂R速率仍不明确。我们使用CO₂和氧气(O₂)生物化学及全身转运的六室数学模型,并纳入用于体外静脉-静脉CO₂清除的ECCO₂R装置,计算了在机械通气的ARDS患者中将动脉血二氧化碳分压(PaCO₂)维持在临床理想水平所需的ECCO₂R速率。该模型假设为稳态条件。模型隔室包括肺毛细血管血、动脉血、静脉血、ECCO₂R后静脉血、组织间液和组织细胞,每个隔室内有CO₂和O₂分布;生物化学包括碳酸氢盐和非碳酸氢盐缓冲液之间的平衡以及CO₂和O₂与血红蛋白的结合,以阐明波尔效应和哈代效应。假设O₂消耗率和CO₂产生率与预测体重(PBW)成正比,并根据LUNG SAFE的平均数据进行调整,以在无ECCO₂R装置的情况下,在潮气量为7.6 mL/kg PBW时达到报告的动脉血氧分压和46 mmHg的PaCO₂水平。模型计算表明,在机械通气频率或呼吸频率为20.8次/分钟时,当潮气量从7.6 mL/kg PBW降至3 mL/kg PBW时,实现轻度允许性高碳酸血症(PaCO₂为46 mmHg)所需的ECCO₂R速率会增加。实现正常碳酸血症(PaCO₂为40 mmHg)需要更高的ECCO₂R速率。模型计算还表明,当通气频率从20.8次/分钟增加到26次/分钟时,所需的ECCO₂R速率会降低。当前的数学模型预测,使用现有技术,在机械通气的ARDS患者中,潮气量为5 - 6 mL/kg PBW时,可能实现导致临床理想PaCO₂水平的ECCO₂R速率;除非使用高机械通气频率,否则使用超保护性潮气量(3 - 4 mL/kg PBW)可能具有挑战性。