Suppr超能文献

量化光物理过程中的纠缠态:在铜光化学敏化剂中的应用。

Quantifying Entatic States in Photophysical Processes: Applications to Copper Photosensitizers.

机构信息

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States.

出版信息

Inorg Chem. 2019 Dec 16;58(24):16800-16817. doi: 10.1021/acs.inorgchem.9b02976. Epub 2019 Nov 26.

Abstract

The entatic or rack-induced state is a core concept in bioinorganic chemistry. In its simplest form, it is present when a protein scaffold places a transition metal ion and its first coordination sphere into an energized geometric and electronic structure that differs significantly from that of the relaxed form. This energized complex can exhibit special properties. Under this purview, however, entatic states are hardly unique to bioinorganic chemistry, and their effects can be found throughout a variety of important chemistries and materials science applications. Despite this broad influence, there are only a few examples where entatic effects have been quantified. Here we extend the entatic concept more generally to photophysical processes by developing a combined experimental and computational methodology to quantify entatic states across an entire class of functional molecules, e.g., Cu-based photosensitizers. These metal complexes have a broad range of applications, including solar electricity generation, solar fuels synthesis, organic light emitting diodes (OLEDs), and photoredox catalysis. As a direct consequence of quantifying entatic states, this methodology allows the disentanglement of steric and electronic contributions to excited state dynamics. Thus, before embarking on the syntheses of new Cu-based photosensitizers, the correlations described herein can be used as an estimate of entatic and electronic contributions and thus guide ligand design and the development of next-generation transition metal complexes with improved or tailored excited state dynamics. Lastly, entatic energies in some Cu photosensitizers are the largest yet quantified and are found here to approach 20 kcal/mol relative to the conformationally flexible [Cu(phen)]. These energetics are significant relative to typical chemical driving forces and barriers, highlighting the utility in extending entatic state descriptors to new classes of molecules and materials with interesting functional properties involving the coupling between electron and vibrational dynamics.

摘要

张弛或应变诱导态是生物无机化学的核心概念。在其最简单的形式中,当蛋白质支架将过渡金属离子及其第一配体场置于与松弛形式显著不同的能量化的几何和电子结构中时,就会出现这种状态。这种能量化的配合物可以表现出特殊的性质。然而,在这个范围内,张弛态在生物无机化学中并不是独一无二的,其影响可以在各种重要的化学和材料科学应用中找到。尽管这种影响广泛,但只有少数几个例子对张弛效应进行了量化。在这里,我们通过开发一种结合实验和计算的方法,将张弛概念更广泛地扩展到光物理过程中,从而对整个功能分子类别(例如基于 Cu 的光致剂)进行张弛态的量化。这些金属配合物具有广泛的应用,包括太阳能发电、太阳能燃料合成、有机发光二极管(OLED)和光还原催化。由于对张弛态进行了量化,这种方法可以将激发态动力学的立体和电子贡献分开。因此,在开始合成新的基于 Cu 的光致剂之前,可以使用本文中描述的相关性来估计张弛和电子贡献,从而指导配体设计和开发具有改进或定制激发态动力学的下一代过渡金属配合物。最后,一些 Cu 光致剂中的张弛能是迄今为止量化的最大的张弛能,并且这里发现它们接近 20 kcal/mol,相对于构象灵活的[Cu(phen)]。这些能量与典型的化学驱动力和障碍相比是显著的,这突出了将张弛态描述符扩展到具有涉及电子和振动动力学耦合的有趣功能性质的新分子和材料类别中的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验