Ren Yufeng, Forté Jeremy, Cheaib Khaled, Vanthuyne Nicolas, Fensterbank Louis, Vezin Hervé, Orio Maylis, Blanchard Sébastien, Desage-El Murr Marine
Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France.
Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, 13397 Marseille, France.
iScience. 2020 Mar 27;23(3):100955. doi: 10.1016/j.isci.2020.100955. Epub 2020 Feb 28.
Metalloenzymes use earth-abundant non-noble metals to perform high-fidelity transformations in the biological world. To ensure chemical efficiency, metalloenzymes have acquired evolutionary reactivity-enhancing tools. Among these, the entatic state model states that a strongly distorted geometry induced by ligands around a metal center gives rise to an energized structure called entatic state, strongly improving the reactivity. However, the original definition refers both to the transfer of electrons or chemical groups, whereas the chemical application of this concept in synthetic systems has mostly focused on electron transfer, therefore eluding chemical transformations. Here we report that a highly strained redox-active ligand enables a copper complex to perform catalytic nitrogen- and carbon-group transfer in as fast as 2 min, thus exhibiting a strong increase in reactivity compared with its unstrained analogue. This report combines two reactivity-enhancing features from metalloenzymes, entasis and redox cofactors, applied to group-transfer catalysis.
金属酶利用地球上储量丰富的非贵金属在生物界进行高保真转化。为确保化学效率,金属酶获得了进化而来的反应性增强工具。其中,内稳态模型指出,金属中心周围的配体诱导产生的强烈扭曲几何结构会产生一种称为内稳态的高能结构,极大地提高了反应性。然而,最初的定义既涉及电子或化学基团的转移,而这一概念在合成体系中的化学应用大多集中在电子转移上,因此忽略了化学转化。在此,我们报道了一种高度应变的氧化还原活性配体能够使铜配合物在短短2分钟内实现催化氮和碳基团转移,因此与其未应变的类似物相比,反应性有显著提高。本报告结合了金属酶的两种反应性增强特征,即内稳态和氧化还原辅因子,并将其应用于基团转移催化。