Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA.
Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
Stem Cell Res Ther. 2019 Nov 26;10(1):347. doi: 10.1186/s13287-019-1468-6.
Extracellular vesicles (EVs) are cellular-derived versatile transporters with a specialized property for trafficking a variety of cargo, including metabolites, growth factors, cytokines, proteins, lipids, and nucleic acids, throughout the microenvironment. EVs can act in a paracrine manner to facilitate communication between cells as well as modulate immune, inflammatory, regenerative, and remodeling processes. Of particular interest is the emerging association between EVs and stem cells, given their ability to integrate complex inputs for facilitating cellular migration to the sites of tissue injury. Additionally, stem cell-derived EVs can also act in an autocrine manner to influence stem cell proliferation, mobilization, differentiation, and self-renewal. Hence, it has been postulated that stem cells and EVs may work synergistically in the process of tissue repair and that dysregulation of EVs may cause a loss of homeostasis in the microenvironment leading to disease. By harnessing the property of EVs for delivery of small molecules, stem cell-derived EVs possess significant potential as a platform for developing bioengineering approaches for next-generation cancer therapies and targeted drug delivery methods. Although one of the main challenges of clinical cancer treatment remains a lack of specificity for the delivery of effective treatment options, EVs can be modified via genetic, biochemical, or synthetic methods for enhanced targeting ability of chemotherapeutic agents in promoting tumor regression. Here, we summarize recent research on the bioengineering potential of EV-based cancer therapies. A comprehensive understanding of EV modification may provide a novel strategy for cancer therapy and for the utilization of EVs in the targeting of oncogenic processes. Furthermore, innovative and emerging new technologies are shifting the paradigm and playing pivotal roles by continually expanding novel methods and materials for synthetic processes involved in the bioengineering of EVs for enhanced precision therapeutics.
细胞外囊泡(EVs)是具有特殊功能的细胞衍生多功能载体,可在细胞外环境中运输多种物质,包括代谢物、生长因子、细胞因子、蛋白质、脂质和核酸。EVs 可以通过旁分泌的方式促进细胞间的通讯,并调节免疫、炎症、再生和重塑过程。特别值得关注的是,EVs 与干细胞之间的新兴关联,因为它们能够整合复杂的输入,促进细胞迁移到组织损伤部位。此外,干细胞衍生的 EVs 也可以通过自分泌的方式影响干细胞的增殖、动员、分化和自我更新。因此,有人提出干细胞和 EVs 可能在组织修复过程中协同作用,而 EVs 的失调可能导致微环境中的内稳态丧失,从而导致疾病。通过利用 EVs 传递小分子的特性,干细胞衍生的 EVs 具有作为下一代癌症治疗和靶向药物递送方法的生物工程方法开发平台的巨大潜力。尽管临床癌症治疗的主要挑战之一仍然是缺乏有效治疗方法的特异性,但可以通过遗传、生化或合成方法修饰 EVs,以增强化疗药物的靶向能力,促进肿瘤消退。在这里,我们总结了基于 EV 的癌症治疗的生物工程潜力的最新研究。对 EV 修饰的全面理解可能为癌症治疗提供一种新策略,并为利用 EV 靶向致癌过程提供一种新策略。此外,创新和新兴的新技术正在通过不断扩展涉及 EV 生物工程的新型方法和材料,为增强精准治疗的合成过程提供新的方法和材料,从而改变范式并发挥关键作用。
Nat Rev Cardiol. 2020-6-1
Adv Exp Med Biol. 2019
J Neuroimmune Pharmacol. 2020-9
Annu Rev Pharmacol Toxicol. 2017-1-6
Semin Cell Dev Biol. 2017-1-8
Int J Stem Cell Res Ther. 2023
J Cancer Res Clin Oncol. 2023-1
Int J Mol Sci. 2022-7-26
Theranostics. 2019-1-30
J Gerontol A Biol Sci Med Sci. 2019-8-16
Am J Cancer Res. 2018-8-1
Front Pharmacol. 2018-7-16