Suppr超能文献

使用卷积神经滤波器对胸部X光图像进行骨骼抑制。

Bone suppression for chest X-ray image using a convolutional neural filter.

作者信息

Matsubara Naoki, Teramoto Atsushi, Saito Kuniaki, Fujita Hiroshi

机构信息

Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-city, Aichi, 470-1192, Japan.

Department of Electrical, Electronic & Computer Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu-city, Gifu, 501-1194, Japan.

出版信息

Australas Phys Eng Sci Med. 2019 Nov 26. doi: 10.1007/s13246-019-00822-w.

Abstract

Chest X-rays are used for mass screening for the early detection of lung cancer. However, lung nodules are often overlooked because of bones overlapping the lung fields. Bone suppression techniques based on artificial intelligence have been developed to solve this problem. However, bone suppression accuracy needs improvement. In this study, we propose a convolutional neural filter (CNF) for bone suppression based on a convolutional neural network which is frequently used in the medical field and has excellent performance in image processing. CNF outputs a value for the bone component of the target pixel by inputting pixel values in the neighborhood of the target pixel. By processing all positions in the input image, a bone-extracted image is generated. Finally, bone-suppressed image is obtained by subtracting the bone-extracted image from the original chest X-ray image. Bone suppression was most accurate when using CNF with six convolutional layers, yielding bone suppression of 89.2%. In addition, abnormalities, if present, were effectively imaged by suppressing only bone components and maintaining soft-tissue. These results suggest that the chances of missing abnormalities may be reduced by using the proposed method. The proposed method is useful for bone suppression in chest X-ray images.

摘要

胸部X光用于大规模筛查以早期发现肺癌。然而,由于骨骼与肺野重叠,肺结节常常被忽视。为了解决这个问题,基于人工智能的骨骼抑制技术已经被开发出来。然而,骨骼抑制的准确性还有待提高。在本研究中,我们提出了一种基于卷积神经网络的卷积神经滤波器(CNF)用于骨骼抑制,该卷积神经网络在医学领域经常使用且在图像处理方面具有出色性能。CNF通过输入目标像素邻域的像素值来输出目标像素的骨骼成分值。通过处理输入图像中的所有位置,生成骨骼提取图像。最后,通过从原始胸部X光图像中减去骨骼提取图像来获得骨骼抑制图像。使用具有六个卷积层的CNF时骨骼抑制最为准确,骨骼抑制率为89.2%。此外,通过仅抑制骨骼成分并保留软组织,如有异常则能有效地成像。这些结果表明,使用所提出的方法可能会减少遗漏异常的几率。所提出的方法对于胸部X光图像中的骨骼抑制很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验