Suppr超能文献

基于胸部X光图像吸气状态的重新评估系统

Retaking assessment system based on the inspiratory state of chest X-ray image.

作者信息

Matsubara Naoki, Teramoto Atsushi, Takei Manabu, Kitoh Yoshihiro, Kawakami Satoshi

机构信息

Division of Radiology, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.

Faculty of Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan.

出版信息

Radiol Phys Technol. 2025 Jun;18(2):384-398. doi: 10.1007/s12194-025-00888-0. Epub 2025 Feb 19.

Abstract

When taking chest X-rays, the patient is encouraged to take maximum inspiration and the radiological technologist takes the images at the appropriate time. If the image is not taken at maximum inspiration, retaking of the image is required. However, there is variation in the judgment of whether retaking is necessary between the operators. Therefore, we considered that it might be possible to reduce variation in judgment by developing a retaking assessment system that evaluates whether retaking is necessary using a convolutional neural network (CNN). To train the CNN, the input chest X-ray image and the corresponding correct label indicating whether retaking is necessary are required. However, chest X-ray images cannot distinguish whether inspiration is sufficient and does not need to be retaken, or insufficient and retaking is required. Therefore, we generated input images and labels from dynamic digital radiography (DDR) and conducted the training. Verification using 18 dynamic chest X-ray cases (5400 images) and 48 actual chest X-ray cases (96 images) showed that the VGG16-based architecture achieved an assessment accuracy of 82.3% even for actual chest X-ray images. Therefore, if the proposed method is used in hospitals, it could possibly reduce the variability in judgment between operators.

摘要

在进行胸部X光检查时,鼓励患者进行最大程度的吸气,放射技师在适当的时候拍摄图像。如果图像不是在最大吸气时拍摄的,则需要重新拍摄。然而,操作人员在判断是否需要重新拍摄方面存在差异。因此,我们认为通过开发一种使用卷积神经网络(CNN)评估是否需要重新拍摄的重新拍摄评估系统,有可能减少判断上的差异。为了训练CNN,需要输入胸部X光图像和表示是否需要重新拍摄的相应正确标签。然而,胸部X光图像无法区分吸气是否充分且无需重新拍摄,还是吸气不足且需要重新拍摄。因此,我们从动态数字放射成像(DDR)生成了输入图像和标签并进行了训练。使用18例动态胸部X光病例(5400张图像)和48例实际胸部X光病例(96张图像)进行的验证表明,基于VGG16的架构即使对于实际胸部X光图像也实现了82.3%的评估准确率。因此,如果在医院中使用所提出的方法,可能会减少操作人员之间判断的变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f28a/12103368/26cd50c7014e/12194_2025_888_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验