Suppr超能文献

基于注意力的多实例学习在肺部细胞学图像分类中的弱监督学习。

Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning.

机构信息

School of Medical Sciences, Fujita Health University, Aichi, Japan.

School of Medicine, Fujita Health University, Aichi, Japan.

出版信息

Sci Rep. 2021 Oct 13;11(1):20317. doi: 10.1038/s41598-021-99246-4.

Abstract

In cytological examination, suspicious cells are evaluated regarding malignancy and cancer type. To assist this, we previously proposed an automated method based on supervised learning that classifies cells in lung cytological images as benign or malignant. However, it is often difficult to label all cells. In this study, we developed a weakly supervised method for the classification of benign and malignant lung cells in cytological images using attention-based deep multiple instance learning (AD MIL). Images of lung cytological specimens were divided into small patch images and stored in bags. Each bag was then labeled as benign or malignant, and classification was conducted using AD MIL. The distribution of attention weights was also calculated as a color map to confirm the presence of malignant cells in the image. AD MIL using the AlexNet-like convolutional neural network model showed the best classification performance, with an accuracy of 0.916, which was better than that of supervised learning. In addition, an attention map of the entire image based on the attention weight allowed AD MIL to focus on most malignant cells. Our weakly supervised method automatically classifies cytological images with acceptable accuracy based on supervised learning without complex annotations.

摘要

在细胞学检查中,可疑细胞的恶性程度和癌症类型是通过评估来确定的。为了协助诊断,我们之前提出了一种基于监督学习的自动化方法,可以对肺细胞学图像中的细胞进行良性或恶性分类。然而,通常很难对所有细胞进行标记。在这项研究中,我们开发了一种基于注意力机制的深度多实例学习(AD MIL)的弱监督方法,用于对细胞学图像中的良性和恶性肺细胞进行分类。将肺细胞学标本的图像分割成小块图像并存储在袋子中。然后,每个袋子被标记为良性或恶性,并使用 AD MIL 进行分类。还计算了注意力权重的分布作为颜色图,以确认图像中是否存在恶性细胞。使用类似于 AlexNet 的卷积神经网络模型的 AD MIL 表现出最佳的分类性能,准确率为 0.916,优于监督学习。此外,基于注意力权重的整个图像的注意力图使 AD MIL 能够专注于大多数恶性细胞。我们的弱监督方法无需复杂的注释即可自动基于监督学习对细胞学图像进行分类,具有可接受的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/248d/8514584/e178fdfca71d/41598_2021_99246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验