Suppr超能文献

个性化人类活动识别模型的增量学习:人机 AI 协作的重要性。

Incremental Learning to Personalize Human Activity Recognition Models: The Importance of Human AI Collaboration.

机构信息

Biomimetics and Intelligent Systems Group, University of Oulu, P.O. BOX 4500, FI-90014 Oulu, Finland.

出版信息

Sensors (Basel). 2019 Nov 25;19(23):5151. doi: 10.3390/s19235151.

Abstract

This study presents incremental learning based methods to personalize human activity recognition models. Initially, a user-independent model is used in the recognition process. When a new user starts to use the human activity recognition application, personal streaming data can be gathered. Of course, this data does not have labels. However, there are three different ways to obtain this data: non-supervised, semi-supervised, and supervised. The non-supervised approach relies purely on predicted labels, the supervised approach uses only human intelligence to label the data, and the proposed method for semi-supervised learning is a combination of these two: It uses artificial intelligence (AI) in most cases to label the data but in uncertain cases it relies on human intelligence. After labels are obtained, the personalization process continues by using the streaming data and these labels to update the incremental learning based model, which in this case is Learn++. Learn++ is an ensemble method that can use any classifier as a base classifier, and this study compares three base classifiers: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and classification and regression tree (CART). Moreover, three datasets are used in the experiment to show how well the presented method generalizes on different datasets. The results show that personalized models are much more accurate than user-independent models. On average, the recognition rates are: 87.0% using the user-independent model, 89.1% using the non-supervised personalization approach, 94.0% using the semi-supervised personalization approach, and 96.5% using the supervised personalization approach. This means that by relying on predicted labels with high confidence, and asking the user to label only uncertain observations (6.6% of the observations when using LDA, 7.7% when using QDA, and 18.3% using CART), almost as low error rates can be achieved as by using the supervised approach, in which labeling is fully based on human intelligence.

摘要

本研究提出了基于增量学习的方法来个性化人类活动识别模型。最初,在识别过程中使用用户独立模型。当新用户开始使用人类活动识别应用程序时,可以收集个人流媒体数据。当然,这些数据没有标签。但是,有三种不同的方法可以获得此数据:无监督、半监督和监督。无监督方法纯粹依赖于预测标签,监督方法仅使用人类智能来标记数据,而本文提出的半监督学习方法是这两种方法的结合:它在大多数情况下使用人工智能 (AI) 来标记数据,但在不确定的情况下依赖于人类智能。在获得标签后,个性化过程继续使用流媒体数据和这些标签来更新基于增量学习的模型,在这种情况下,使用的是 Learn++。Learn++ 是一种集成方法,可以将任何分类器用作基础分类器,本研究比较了三个基础分类器:线性判别分析 (LDA)、二次判别分析 (QDA) 和分类回归树 (CART)。此外,实验中使用了三个数据集来展示所提出的方法在不同数据集上的泛化能力。结果表明,个性化模型比用户独立模型准确得多。平均而言,识别率为:使用用户独立模型时为 87.0%,使用无监督个性化方法时为 89.1%,使用半监督个性化方法时为 94.0%,使用监督个性化方法时为 96.5%。这意味着,通过依赖具有高置信度的预测标签,并要求用户仅标记不确定的观察结果(当使用 LDA 时为 6.6%,当使用 QDA 时为 7.7%,当使用 CART 时为 18.3%),几乎可以达到与完全依赖人类智能的监督方法一样低的错误率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae65/6928956/5c8dc4fcdc65/sensors-19-05151-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验