Suppr超能文献

飞行羽毛的形成:生物建筑原理与适应

The Making of a Flight Feather: Bio-architectural Principles and Adaptation.

机构信息

Integrative Stem Cell Center (ISSC), China Medical University Hospital (CMUH), Taichung 40447, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University (NCKU), Tainan 701, Taiwan.

Integrative Stem Cell Center (ISSC), China Medical University Hospital (CMUH), Taichung 40447, Taiwan; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung 40402, Taiwan.

出版信息

Cell. 2019 Nov 27;179(6):1409-1423.e17. doi: 10.1016/j.cell.2019.11.008.

Abstract

The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor β (TGF-β) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs. VIDEO ABSTRACT.

摘要

数百万年来,有羽毛恐龙和早期鸟类的飞行进化需要具有层次分支结构的飞行羽毛。虽然已经研究了基于羽小枝的羽毛形式,但羽毛轴和羽片的研究还很不足。在这里,我们采用多学科的方法来研究它们的分子控制和生物建筑组织。在羽轴脊中,表皮祖细胞在 Bmp 和转化生长因子 β(TGF-β)信号的指导下产生皮质和髓质角蛋白ocytes,将羽轴转化为可适应的双层复合梁。在羽小枝脊中,表皮祖细胞产生圆柱形、板状或钩状羽小枝细胞,形成蓬松的分支或羽状羽片,由不对称细胞连接和角蛋白表达介导。转录组分析和功能研究表明,真皮乳头内的前后 Wnt2b 信号控制着羽小枝细胞命运,具有时空共线性。对来自具有不同飞行特征的鸟类的羽毛和缅甸琥珀中的羽毛进行的定量生物物理分析揭示了如何实现多维功能,并且可能为未来的复合材料设计提供灵感。视频摘要。

相似文献

1
The Making of a Flight Feather: Bio-architectural Principles and Adaptation.
Cell. 2019 Nov 27;179(6):1409-1423.e17. doi: 10.1016/j.cell.2019.11.008.
2
Review: cornification, morphogenesis and evolution of feathers.
Protoplasma. 2017 May;254(3):1259-1281. doi: 10.1007/s00709-016-1019-2. Epub 2016 Sep 10.
3
Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
Proc Biol Sci. 2015 Mar 22;282(1803):20142864. doi: 10.1098/rspb.2014.2864.
6
Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia.
Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):951-5. doi: 10.1073/pnas.0506894103. Epub 2006 Jan 17.
7
Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
Prog Histochem Cytochem. 2008;43(1):1-69. doi: 10.1016/j.proghi.2008.01.001. Epub 2008 Mar 14.
8
Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.
Anat Sci Int. 2010 Jun;85(2):79-91. doi: 10.1007/s12565-009-0060-z. Epub 2009 Aug 29.
9
Feathered dinosaurs.
Curr Biol. 2020 Nov 16;30(22):R1347-R1353. doi: 10.1016/j.cub.2020.10.007.

引用本文的文献

3
The feather's multi-functional structure across nano to macro scales inspires hierarchical design.
J R Soc Interface. 2025 Apr;22(225):20240776. doi: 10.1098/rsif.2024.0776. Epub 2025 Apr 23.
4
Skin regional specification and higher-order regulation.
Sci Adv. 2025 Mar 21;11(12):eado2223. doi: 10.1126/sciadv.ado2223.
5
The origin and early evolution of feathers: implications, uncertainties and future prospects.
Biol Lett. 2025 Feb;21(2):20240517. doi: 10.1098/rsbl.2024.0517. Epub 2025 Feb 19.
7
Analysis of the Reliability of Feather Sections for Corticosterone Measurement in Pekin Ducks.
Animals (Basel). 2025 Jan 8;15(2):138. doi: 10.3390/ani15020138.
8
Modification of Keratin Integrations and the Associated Morphogenesis in Frizzling Chicken Feathers.
Biology (Basel). 2024 Jun 23;13(7):464. doi: 10.3390/biology13070464.
9
Conserved regulatory switches for the transition from natal down to juvenile feather in birds.
Nat Commun. 2024 May 16;15(1):4174. doi: 10.1038/s41467-024-48303-3.
10
Adaptive patterning of vascular network during avian skin development: Mesenchymal plasticity and dermal vasculogenesis.
Cells Dev. 2024 Sep;179:203922. doi: 10.1016/j.cdev.2024.203922. Epub 2024 Apr 28.

本文引用的文献

1
The Early Origin of Feathers.
Trends Ecol Evol. 2019 Sep;34(9):856-869. doi: 10.1016/j.tree.2019.04.018. Epub 2019 Jun 1.
3
Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease.
Signal Transduct Target Ther. 2018 Jun 8;3:15. doi: 10.1038/s41392-018-0015-8. eCollection 2018.
4
Contraction of basal filopodia controls periodic feather branching via Notch and FGF signaling.
Nat Commun. 2018 Apr 9;9(1):1345. doi: 10.1038/s41467-018-03801-z.
5
Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds.
Science. 2018 Feb 8;359(6376):653-657. doi: 10.1126/science.aao7104. eCollection 2018 Feb 9.
6
Growth patterns for shape-shifting elastic bilayers.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11597-11602. doi: 10.1073/pnas.1709025114. Epub 2017 Oct 16.
7
Microstructural tissue-engineering in the rachis and barbs of bird feathers.
Sci Rep. 2017 Mar 27;7:45162. doi: 10.1038/srep45162.
8
Light Like a Feather: A Fibrous Natural Composite with a Shape Changing from Round to Square.
Adv Sci (Weinh). 2016 Dec 1;4(3):1600360. doi: 10.1002/advs.201600360. eCollection 2017 Mar.
10
The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.
PeerJ. 2016 Jul 7;4:e2159. doi: 10.7717/peerj.2159. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验