Integrative Stem Cell Center (ISSC), China Medical University Hospital (CMUH), Taichung 40447, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University (NCKU), Tainan 701, Taiwan.
Integrative Stem Cell Center (ISSC), China Medical University Hospital (CMUH), Taichung 40447, Taiwan; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung 40402, Taiwan.
Cell. 2019 Nov 27;179(6):1409-1423.e17. doi: 10.1016/j.cell.2019.11.008.
The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor β (TGF-β) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs. VIDEO ABSTRACT.
数百万年来,有羽毛恐龙和早期鸟类的飞行进化需要具有层次分支结构的飞行羽毛。虽然已经研究了基于羽小枝的羽毛形式,但羽毛轴和羽片的研究还很不足。在这里,我们采用多学科的方法来研究它们的分子控制和生物建筑组织。在羽轴脊中,表皮祖细胞在 Bmp 和转化生长因子 β(TGF-β)信号的指导下产生皮质和髓质角蛋白ocytes,将羽轴转化为可适应的双层复合梁。在羽小枝脊中,表皮祖细胞产生圆柱形、板状或钩状羽小枝细胞,形成蓬松的分支或羽状羽片,由不对称细胞连接和角蛋白表达介导。转录组分析和功能研究表明,真皮乳头内的前后 Wnt2b 信号控制着羽小枝细胞命运,具有时空共线性。对来自具有不同飞行特征的鸟类的羽毛和缅甸琥珀中的羽毛进行的定量生物物理分析揭示了如何实现多维功能,并且可能为未来的复合材料设计提供灵感。视频摘要。