Suppr超能文献

A mathematical study of human intracranial hydrodynamics. Part 2--Simulation of clinical tests.

作者信息

Ursino M

机构信息

Department of Electronics, Informatics and Systemics, University of Bologna, Italy.

出版信息

Ann Biomed Eng. 1988;16(4):403-16. doi: 10.1007/BF02364626.

Abstract

The mathematical model of human intracranial hydrodynamics proposed in a previous paper is here used to simulate the results of some dynamical tests of great clinical and physiological value and to analyze the blood flow pattern in the intracranial human basal arteries (especially in the internal carotid artery). Peak to peak amplitude of the blood flow waveform in the intracranial basal arteries, computed through the model, shows a significant increase at intracranial pressure levels above 50-60 mmHg, in accordance with recent experimental data. Moreover, diastolic blood flow appears to be largely sensitive to intracranial pressure changes during severe intracranial hypertension, whereas systolic blood flow is only slightly affected in this condition. The response of intracranial pressure to typical saline injection (volume-pressure response, steady state infusion and bolus injection tests) and to an abrupt obstruction in the extracranial venous drainage pathway is also well reproduced by the model. Finally, alterations in these responses, due to changes in some significant intracranial hydrodynamical parameters (i.e., the intracranial elastance coefficient and CSF outflow resistance) are presented.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验