Baues Maike, Klinkhammer Barbara M, Ehling Josef, Gremse Felix, van Zandvoort Marc A M J, Reutelingsperger Chris P M, Daniel Christoph, Amann Kerstin, Bábíčková Janka, Kiessling Fabian, Floege Jürgen, Lammers Twan, Boor Peter
Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany.
Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
Kidney Int. 2020 Mar;97(3):609-614. doi: 10.1016/j.kint.2019.08.029. Epub 2019 Sep 18.
Pathological deposition of collagen is a hallmark of kidney fibrosis. To illustrate this process we employed multimodal optical imaging to visualize and quantify collagen deposition in murine models of kidney fibrosis (ischemia-reperfusion or unilateral ureteral obstruction) using the collagen-binding adhesion protein CNA35. For in vivo imaging, we used hybrid computed tomography-fluorescence molecular tomography and CNA35 labeled with the near-infrared fluorophore Cy7. Upon intravenous injection, CNA35-Cy7 accumulation was significantly higher in fibrotic compared to non-fibrotic kidneys. This difference was not detected for a non-specific scrambled version of CNA35-Cy7. Ex vivo, on kidney sections of mice and patients with renal fibrosis, CNA35-FITC co-localized with fibrotic collagen type I and III, but not with the basement membrane collagen type IV. Following intravenous injection, CNA35-FITC bound to both interstitial and perivascular fibrotic areas. In line with this perivascular accumulation, we observed significant perivascular fibrosis in the mouse models and in biopsy sections from patients with chronic kidney disease using computer-based morphometry quantification. Thus, molecular imaging of collagen using CNA35 enabled specific non-invasive quantification of kidney fibrosis. Collagen imaging revealed significant perivascular fibrosis as a consistent component next to the more commonly assessed interstitial fibrosis. Our results lay the basis for further probe and protocol optimization towards the clinical translation of molecular imaging of kidney fibrosis.
胶原蛋白的病理性沉积是肾纤维化的一个标志。为了阐释这一过程,我们采用多模态光学成像技术,利用胶原蛋白结合粘附蛋白CNA35,对肾纤维化(缺血再灌注或单侧输尿管梗阻)小鼠模型中的胶原蛋白沉积进行可视化和定量分析。对于体内成像,我们使用了混合计算机断层扫描-荧光分子断层扫描技术以及用近红外荧光团Cy7标记的CNA35。静脉注射后,与非纤维化肾脏相比,CNA35-Cy7在纤维化肾脏中的蓄积明显更高。对于CNA35-Cy7的非特异性随机序列版本,未检测到这种差异。在体外,在小鼠和肾纤维化患者的肾脏切片上,CNA35-FITC与纤维化的I型和III型胶原蛋白共定位,但与IV型基底膜胶原蛋白不共定位。静脉注射后,CNA35-FITC与间质和血管周围的纤维化区域结合。与这种血管周围蓄积一致,我们使用基于计算机的形态计量学定量分析,在小鼠模型和慢性肾病患者的活检切片中观察到了明显的血管周围纤维化。因此,使用CNA35对胶原蛋白进行分子成像能够对肾纤维化进行特异性非侵入性定量分析。胶原蛋白成像显示,除了更常评估的间质纤维化外,血管周围纤维化是一个一致的显著成分。我们的研究结果为进一步优化探针和方案以实现肾纤维化分子成像的临床转化奠定了基础。