Christen Ian, Propson Thomas, Sutula Madison, Sattari Hamed, Choong Gregory, Panuski Christopher, Melville Alexander, Mallek Justin, Brabec Cole, Hamilton Scott, Dixon P Benjamin, Menssen Adrian J, Braje Danielle, Ghadimi Amir H, Englund Dirk
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Centre Suisse d'Electronique et de Microtechnique (CSEM), Neuchâtel, Switzerland.
Nat Commun. 2025 Jan 2;16(1):82. doi: 10.1038/s41467-024-55423-3.
Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices. However, material platforms for high-speed telecom integrated photonics lack transparency at the short wavelengths required by leading atomic systems. Here, we propose and implement a scalable and reconfigurable photonic control architecture using integrated, visible-light modulators based on thin-film lithium niobate. We combine this system with techniques in free-space optics and holography to demonstrate multi-channel, gigahertz-rate visible beamshaping. When applied to silicon-vacancy artificial atoms, our system enables the spatial and spectral addressing of a dynamically-selectable set of these stochastically-positioned point emitters.
用于可扩展、高性能光学控制的解决方案对于基于原子的量子技术的规模化发展至关重要。对多个独立光束进行调制是在原子阵列或类原子系统上应用任意门和控制序列的核心。在电信波长下,通过光子集成实现光学元件的小型化,已将经典光学和量子光学的规模及性能远远超越了体器件的限制。然而,用于高速电信集成光子学的材料平台在领先原子系统所需的短波长下缺乏透明度。在此,我们提出并实现了一种基于薄膜铌酸锂集成可见光调制器的可扩展且可重构的光子控制架构。我们将该系统与自由空间光学和全息技术相结合,以展示多通道、千兆赫兹速率的可见光光束整形。当应用于硅空位人工原子时,我们的系统能够对这些随机定位的点发射器的动态选择集进行空间和光谱寻址。