Suppr超能文献

一种用于实验设计的非平稳环境下学习的模型证伪方法。

A Model Falsification Approach to Learning in Non-Stationary Environments for Experimental Design.

作者信息

Murari Andrea, Lungaroni Michele, Peluso Emmanuele, Craciunescu Teddy, Gelfusa Michela

机构信息

Consorzio RFX (CNR, ENEA, INFN, Universita' Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127, Padova, Italy.

Department of Industrial Engineering, University of Rome "Tor Vergata", via del Politecnico 1, 00100, Rome, Italy.

出版信息

Sci Rep. 2019 Nov 29;9(1):17880. doi: 10.1038/s41598-019-54145-7.

Abstract

The application of data driven machine learning and advanced statistical tools to complex physics experiments, such as Magnetic Confinement Nuclear Fusion, can be problematic, due the varying conditions of the systems to be studied. In particular, new experiments have to be planned in unexplored regions of the operational space. As a consequence, care must be taken because the input quantities used to train and test the performance of the analysis tools are not necessarily sampled by the same probability distribution as in the final applications. The regressors and dependent variables cannot therefore be assumed to verify the i.i.d. (independent and identical distribution) hypothesis and learning has therefore to take place under non stationary conditions. In the present paper, a new data driven methodology is proposed to guide planning of experiments, to explore the operational space and to optimise performance. The approach is based on the falsification of existing models. The deployment of Symbolic Regression via Genetic Programming to the available data is used to identify a set of candidate models, using the method of the Pareto Frontier. The confidence intervals for the predictions of such models are then used to find the best region of the parameter space for their falsification, where the next set of experiments can be most profitably carried out. Extensive numerical tests and applications to the scaling laws in Tokamaks prove the viability of the proposed methodology.

摘要

将数据驱动的机器学习和先进的统计工具应用于复杂的物理实验,如磁约束核聚变,可能会出现问题,因为待研究系统的条件各不相同。特别是,新的实验必须在运行空间中未探索的区域进行规划。因此,必须谨慎,因为用于训练和测试分析工具性能的输入量不一定与最终应用中的概率分布相同。因此,不能假设回归变量和因变量满足独立同分布(i.i.d.)假设,学习必须在非平稳条件下进行。在本文中,提出了一种新的数据驱动方法,以指导实验规划、探索运行空间并优化性能。该方法基于对现有模型的证伪。通过遗传编程将符号回归应用于可用数据,以使用帕累托前沿方法识别一组候选模型。然后,使用这些模型预测的置信区间来找到参数空间中最有利于证伪的最佳区域,在该区域可以最有效地进行下一组实验。对托卡马克标度律的大量数值测试和应用证明了所提出方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1c/6884580/e182001e93fb/41598_2019_54145_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验