Suppr超能文献

NNTox:基于神经网络的基因本体论蛋白质毒性预测。

NNTox: Gene Ontology-Based Protein Toxicity Prediction Using Neural Network.

机构信息

Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.

Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Sci Rep. 2019 Nov 29;9(1):17923. doi: 10.1038/s41598-019-54405-6.

Abstract

With advancements in synthetic biology, the cost and the time needed for designing and synthesizing customized gene products have been steadily decreasing. Many research laboratories in academia as well as industry routinely create genetically engineered proteins as a part of their research activities. However, manipulation of protein sequences could result in unintentional production of toxic proteins. Therefore, being able to identify the toxicity of a protein before the synthesis would reduce the risk of potential hazards. Existing methods are too specific, which limits their application. Here, we extended general function prediction methods for predicting the toxicity of proteins. Protein function prediction methods have been actively studied in the bioinformatics community and have shown significant improvement over the last decade. We have previously developed successful function prediction methods, which were shown to be among top-performing methods in the community-wide functional annotation experiment, CAFA. Based on our function prediction method, we developed a neural network model, named NNTox, which uses predicted GO terms for a target protein to further predict the possibility of the protein being toxic. We have also developed a multi-label model, which can predict the specific toxicity type of the query sequence. Together, this work analyses the relationship between GO terms and protein toxicity and builds predictor models of protein toxicity.

摘要

随着合成生物学的进步,设计和合成定制基因产物所需的成本和时间一直在稳步下降。学术界和工业界的许多研究实验室经常将基因工程蛋白作为其研究活动的一部分来创造。然而,对蛋白质序列的操作可能会导致意外产生有毒蛋白质。因此,在合成之前能够识别蛋白质的毒性,可以降低潜在危害的风险。现有的方法过于具体,限制了它们的应用。在这里,我们扩展了一般功能预测方法来预测蛋白质的毒性。蛋白质功能预测方法在生物信息学领域得到了积极研究,并在过去十年中取得了显著进展。我们之前已经开发了成功的功能预测方法,在社区范围内的功能注释实验 CAFA 中,这些方法被证明是表现最好的方法之一。基于我们的功能预测方法,我们开发了一个名为 NNTox 的神经网络模型,该模型使用目标蛋白质的预测 GO 术语来进一步预测该蛋白质有毒的可能性。我们还开发了一个多标签模型,可以预测查询序列的特定毒性类型。总之,这项工作分析了 GO 术语和蛋白质毒性之间的关系,并建立了蛋白质毒性预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae8/6884647/ca6167add895/41598_2019_54405_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验