Center for Bio/Molecular Science and Engineering, Code 6900 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
College of Science , George Mason University Fairfax , Virginia 22030 , United States.
ACS Sens. 2018 Oct 26;3(10):1894-2024. doi: 10.1021/acssensors.8b00420. Epub 2018 Sep 11.
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
尽管大多数生物威胁剂的致病性已经得到了基本阐明,并且过去几十年来可用的治疗方法有了实质性的增加,但在这个(生物)恐怖主义、不分青红皂白的战争、污染、气候变化、人口无节制增长和全球化的时代,它们仍然是一个重大的公共卫生威胁。几乎所有生物剂的预防、保护、预防接种、暴露后治疗和缓解的关键步骤都是早期检测。在这里,我们回顾了现有的检测生物剂的方法,包括致病性细菌和病毒及其毒素。首先介绍了将这一主题置于以前自然发生的爆发和有选择地将某些制剂武器化的历史背景下的定义和相关考虑。接下来概述了在这一努力中使用的检测技术,以及它们如何在传感配置中提供数据或转换信号。然后讨论了当前用于生物威胁检测/诊断的“黄金”标准,以及列出的相关 FDA 批准的体外诊断设备,以提供该领域的最新技术。鉴于 2014 年西非爆发埃博拉病毒和最近 2016 年美洲爆发寨卡病毒,还讨论了构成公共卫生紧急情况的原因以及如何授权新的体外诊断设备在美国紧急使用。综述的大部分内容随后围绕细菌、病毒和毒素生物威胁的传感进行细分,每个部分都包括该类别的主要试剂概述、根据检测格式或分析技术开发的不同传感方法的详细横断面,以及一些关于相关微流控芯片实验室/即时检测设备的讨论。最后,从生物传感技术本身和它们可能面临的新出现的威胁的角度展望了该领域的发展。
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016-12
Virulence. 2013-11-15
Lab Chip. 2011-1-20
Disaster Med Public Health Prep. 2009-12
Chem Soc Rev. 2013-11-21
Medicine (Baltimore). 2025-5-2
Open Vet J. 2024-11
Methods Mol Biol. 2024
Chem Soc Rev. 2023-11-13
Biosensors (Basel). 2023-6-9
Int J Mol Sci. 2022-12-14