Suppr超能文献

重叠的字母-音位对应同时训练增强了学习和保持。

Simultaneous training on overlapping grapheme phoneme correspondences augments learning and retention.

机构信息

Institute of Psychology, RWTH Aachen University, D-52066 Aachen, Germany.

Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.

出版信息

J Exp Child Psychol. 2020 Mar;191:104731. doi: 10.1016/j.jecp.2019.104731. Epub 2019 Nov 28.

Abstract

An important component of learning to read is the acquisition of letter-to-sound mappings. The sheer quantity of mappings and many exceptions in opaque languages such as English suggests that children may use a form of statistical learning to acquire them. However, whereas statistical models of reading are item-based, reading instruction typically focuses on rule-based approaches involving small sets of regularities. This discrepancy poses the question of how different groupings of regularities, an unexamined factor of most reading curricula, may affect learning. Exploring the interplay between item statistics and rules, this study investigated how consonant variability, an item-level factor, and the degree of overlap among the to-be-trained vowel strings, a group-level factor, influence learning. English-speaking first graders (N = 361) were randomly assigned to be trained on vowel sets with high overlap (e.g., EA, AI) or low overlap (e.g., EE, AI); this was crossed with a manipulation of consonant frame variability. Whereas high vowel overlap led to poorer initial performance, it resulted in more learning when tested immediately and after a 2-week-delay. There was little beneficial effect of consonant variability. These findings indicate that online letter/sound processing affects how new knowledge is integrated into existing information. Moreover, they suggest that vowel overlap should be considered when designing reading curricula.

摘要

学习阅读的一个重要组成部分是获得字母到声音的映射。在英语等不透明语言中,映射的数量之多和许多例外情况表明,儿童可能会使用一种统计学习形式来习得这些映射。然而,尽管阅读的统计模型是基于项目的,但阅读教学通常侧重于基于规则的方法,涉及少量的规则。这种差异提出了一个问题,即大多数阅读课程中未被检验的因素——不同的规则分组如何影响学习。本研究探讨了项目统计数据和规则之间的相互作用,研究了辅音变化性(项目水平因素)和待训练元音串之间的重叠程度(组水平因素)如何影响学习。英语为母语的一年级学生(N=361)被随机分配到具有高重叠(例如,EA,AI)或低重叠(例如,EE,AI)的元音集上进行训练;这与辅音框架变化性的操纵相结合。虽然高元音重叠会导致初始表现较差,但在立即测试和 2 周延迟后,它会导致更多的学习。辅音变化性几乎没有有益的效果。这些发现表明,在线字母/声音处理会影响新知识如何融入现有信息。此外,它们表明,在设计阅读课程时应考虑元音重叠。

相似文献

本文引用的文献

3
Statistical Learning: How it Relates to Speech-Language Pathology.统计学习:它与言语语言病理学的关系
Lang Speech Hear Serv Sch. 2018 Aug 14;49(3S):631-633. doi: 10.1044/2018_LSHSS-STLT1-18-0040.
6
Statistical Learning is Related to Early Literacy-Related Skills.统计学习与早期读写相关技能有关。
Read Writ. 2015 Apr;28(4):467-490. doi: 10.1007/s11145-014-9533-0. Epub 2014 Dec 7.
7
Statistical Learning, Letter Reversals, and Reading.统计学习、字母反转与阅读
Sci Stud Read. 2014;18(6):383-394. doi: 10.1080/10888438.2013.873937.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验