Department of Psychology, University of Toronto.
Department of Psychology, University of Exeter.
J Exp Psychol Gen. 2017 Feb;146(2):227-249. doi: 10.1037/xge0000257.
Connectionist accounts of quasiregular domains, such as spelling-sound correspondences in English, represent exception words (e.g., pint) amid regular words (e.g., mint) via a graded "warping" mechanism. Warping allows the model to extend the dominant pronunciation to nonwords (regularization) with minimal interference (spillover) from the exceptions. We tested for a behavioral marker of warping by investigating the degree to which participants generalized from newly learned made-up words, which ranged from sharing the dominant pronunciation (regulars), a subordinate pronunciation (ambiguous), or a previously nonexistent (exception) pronunciation. The new words were learned over 2 days, and generalization was assessed 48 hr later using nonword neighbors of the new words in a tempo naming task. The frequency of regularization (a measure of generalization) was directly related to degree of warping required to learn the pronunciation of the new word. Simulations using the Plaut, McClelland, Seidenberg, and Patterson (1996) model further support a warping interpretation. These findings highlight the need to develop theories of representation that are integrally tied to how those representations are learned and generalized. (PsycINFO Database Record
连接主义者对拟正则区域的解释,例如英语中的拼写-发音对应关系,通过一种分级的“扭曲”机制来表示例外单词(例如 pint)和规则单词(例如 mint)。扭曲允许模型通过最小的干扰(溢出)从例外情况将主导发音扩展到非单词(正则化)。我们通过研究参与者从新学习的编造单词中进行泛化的程度来测试扭曲的行为标记,这些新单词的发音范围从共享主导发音(规则词)、从属发音(歧义词)或以前不存在的发音(例外词)。新单词在两天内学习,48 小时后在 tempo 命名任务中使用新单词的非单词邻居评估泛化。正则化的频率(衡量泛化的指标)与学习新单词发音所需的扭曲程度直接相关。使用 Plaut、McClelland、Seidenberg 和 Patterson(1996 年)模型进行的模拟进一步支持了扭曲的解释。这些发现强调需要开发与表示形式的学习和泛化方式紧密结合的表示形式理论。