Suppr超能文献

DeepPPI:利用深度神经网络提升蛋白质-蛋白质相互作用预测。

DeepPPI: Boosting Prediction of Protein-Protein Interactions with Deep Neural Networks.

机构信息

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, ‡School of Computer Science and Technology, and §Center of Information Support & Assurance Technology, Anhui University , Hefei, 230601 Anhui, China.

出版信息

J Chem Inf Model. 2017 Jun 26;57(6):1499-1510. doi: 10.1021/acs.jcim.7b00028. Epub 2017 May 26.

Abstract

The complex language of eukaryotic gene expression remains incompletely understood. Despite the importance suggested by many proteins variants statistically associated with human disease, nearly all such variants have unknown mechanisms, for example, protein-protein interactions (PPIs). In this study, we address this challenge using a recent machine learning advance-deep neural networks (DNNs). We aim at improving the performance of PPIs prediction and propose a method called DeepPPI (Deep neural networks for Protein-Protein Interactions prediction), which employs deep neural networks to learn effectively the representations of proteins from common protein descriptors. The experimental results indicate that DeepPPI achieves superior performance on the test data set with an Accuracy of 92.50%, Precision of 94.38%, Recall of 90.56%, Specificity of 94.49%, Matthews Correlation Coefficient of 85.08% and Area Under the Curve of 97.43%, respectively. Extensive experiments show that DeepPPI can learn useful features of proteins pairs by a layer-wise abstraction, and thus achieves better prediction performance than existing methods. The source code of our approach can be available via http://ailab.ahu.edu.cn:8087/DeepPPI/index.html .

摘要

真核基因表达的复杂语言仍未被完全理解。尽管许多与人类疾病相关的蛋白质变异体具有重要意义,但几乎所有这些变异体的机制都未知,例如蛋白质-蛋白质相互作用(PPIs)。在这项研究中,我们使用最近的机器学习进展——深度神经网络(DNN)来应对这一挑战。我们旨在提高 PPIs 预测的性能,并提出了一种称为 DeepPPI(用于蛋白质-蛋白质相互作用预测的深度神经网络)的方法,该方法利用深度神经网络从常见的蛋白质描述符中有效地学习蛋白质的表示。实验结果表明,DeepPPI 在测试数据集上的表现优于其他方法,其准确率为 92.50%,精度为 94.38%,召回率为 90.56%,特异性为 94.49%,马修斯相关系数为 85.08%,曲线下面积为 97.43%。广泛的实验表明,DeepPPI 可以通过逐层抽象来学习蛋白质对的有用特征,从而实现比现有方法更好的预测性能。我们方法的源代码可以通过 http://ailab.ahu.edu.cn:8087/DeepPPI/index.html 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验