Suppr超能文献

真菌高度还原聚酮合酶生物合成水杨醛,水杨醛是环氧环己醇天然产物的前体。

Fungal Highly Reducing Polyketide Synthases Biosynthesize Salicylaldehydes That Are Precursors to Epoxycyclohexenol Natural Products.

机构信息

Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States.

State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P.R. China.

出版信息

J Am Chem Soc. 2019 Dec 18;141(50):19538-19541. doi: 10.1021/jacs.9b09669. Epub 2019 Dec 5.

Abstract

Fungal highly reducing polyketide synthases (HRPKSs) are highly programmed multidomain enzymes that synthesize reduced polyketide structures. Recent reports indicated salicylaldehydes are synthesized by HRPKS biosynthetic gene clusters, which are unexpected based on known enzymology of HRPKSs. Using genome mining of a HRPKS gene cluster that encodes a number of redox enzymes, we uncover the strategy used by HRPKS pathways in the biosynthesis of aromatic products such as salicylaldehyde , which can be oxidatively modified to the epoxycyclohexanol natural product trichoxide . We show selective β-hydroxyl groups in the linear HRPKS product are individually reoxidized to β-ketones by short-chain dehydrogenase/reductase enzymes, which enabled intramolecular aldol condensation and aromatization. Our work expands the chemical space of natural products accessible through HRPKS pathways.

摘要

真菌高度还原聚酮合酶(HRPKSs)是高度程序化的多结构域酶,可合成还原型聚酮结构。最近的报道表明,水杨醛是由 HRPKS 生物合成基因簇合成的,这与已知的 HRPKS 酶学知识不符。通过对一个编码多种氧化还原酶的 HRPKS 基因簇进行基因组挖掘,我们揭示了 HRPKS 途径在芳香族产物(如水杨醛)生物合成中使用的策略,水杨醛可以被氧化修饰成环氧环己醇天然产物三氧化物。我们发现线性 HRPKS 产物中的选择性β-羟基基团可被短链脱氢酶/还原酶单独重新氧化为β-酮,从而实现了分子内羟醛缩合和芳构化。我们的工作扩展了通过 HRPKS 途径获得的天然产物的化学空间。

相似文献

1
Fungal Highly Reducing Polyketide Synthases Biosynthesize Salicylaldehydes That Are Precursors to Epoxycyclohexenol Natural Products.
J Am Chem Soc. 2019 Dec 18;141(50):19538-19541. doi: 10.1021/jacs.9b09669. Epub 2019 Dec 5.
2
Reversible Product Release and Recapture by a Fungal Polyketide Synthase Using a Carnitine Acyltransferase Domain.
Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9556-9560. doi: 10.1002/anie.201705237. Epub 2017 Jul 5.
3
Thioesterase-Catalyzed Aminoacylation and Thiolation of Polyketides in Fungi.
J Am Chem Soc. 2019 May 22;141(20):8198-8206. doi: 10.1021/jacs.9b01083. Epub 2019 May 10.
4
Collaborative Biosynthesis of Maleimide- and Succinimide-Containing Natural Products by Fungal Polyketide Megasynthases.
J Am Chem Soc. 2017 Apr 19;139(15):5317-5320. doi: 10.1021/jacs.7b02432. Epub 2017 Apr 5.
5
Fungal polyketide synthase product chain-length control by partnering thiohydrolase.
ACS Chem Biol. 2014 Jul 18;9(7):1576-86. doi: 10.1021/cb500284t. Epub 2014 May 29.
6
Ketoreductase Domain-Catalyzed Polyketide Chain Release in Fungal Alkyl Salicylaldehyde Biosynthesis.
J Am Chem Soc. 2023 May 24;145(20):11293-11300. doi: 10.1021/jacs.3c02011. Epub 2023 May 12.
7
Fungal benzene carbaldehydes: occurrence, structural diversity, activities and biosynthesis.
Nat Prod Rep. 2021 Jan 1;38(1):240-263. doi: 10.1039/d0np00026d. Epub 2020 Aug 11.
9
One Polyketide Synthase, Two Distinct Products: Trans-Acting Enzyme-Controlled Product Divergence in Calbistrin Biosynthesis.
Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8851-8858. doi: 10.1002/anie.202016525. Epub 2021 Mar 1.
10
[Progress in fungal polyketide biosynthesis].
Sheng Wu Gong Cheng Xue Bao. 2018 Feb 25;34(2):151-164. doi: 10.13345/j.cjb.170219.

引用本文的文献

1
Epoxide Stereochemistry Controls Regioselective Ketoreduction in Epoxyquinoid Biosynthesis.
J Am Chem Soc. 2025 Aug 13;147(32):29582-29591. doi: 10.1021/jacs.5c10778. Epub 2025 Jul 29.
2
Alternarias G and H: Benzoxepine Derivatives from the Endophytic Fungus sp. HJT-Y7.
ACS Omega. 2025 Jun 3;10(23):24973-24979. doi: 10.1021/acsomega.5c02528. eCollection 2025 Jun 17.
3
A Toxin of Valsa mali Determines Virulence and Host Preference.
Mol Plant Pathol. 2025 Jun;26(6):e70106. doi: 10.1111/mpp.70106.
4
Formation of -Hydroxyethylisoindolinone Derivatives in Fungi Requires Highly Coordinated Consecutive Oxidation Steps.
Org Lett. 2025 Mar 14;27(10):2433-2437. doi: 10.1021/acs.orglett.5c00328. Epub 2025 Mar 3.
5
Unveiling the Genomic Features and Biocontrol Potential of Against Root Rot Pathogens.
J Fungi (Basel). 2025 Feb 8;11(2):126. doi: 10.3390/jof11020126.
6
Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories.
Eng Microbiol. 2022 Jan 19;2(1):100011. doi: 10.1016/j.engmic.2022.100011. eCollection 2022 Mar.
10
Penisimplicins A and B: Novel Polyketide-Peptide Hybrid Alkaloids from the Fungus JXCC5.
Molecules. 2024 Jan 27;29(3):613. doi: 10.3390/molecules29030613.

本文引用的文献

1
Genome Mining Reveals Neurospora crassa Can Produce the Salicylaldehyde Sordarial.
J Nat Prod. 2019 Apr 26;82(4):1029-1033. doi: 10.1021/acs.jnatprod.8b00983. Epub 2019 Mar 25.
3
Colorimetric Recognition of Aldehydes and Ketones.
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9860-9863. doi: 10.1002/anie.201705264. Epub 2017 Jul 17.
4
Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae.
Microbiology (Reading). 2017 Apr;163(4):541-553. doi: 10.1099/mic.0.000396. Epub 2017 Apr 6.
5
6
Involvement of Lipocalin-like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition.
Chembiochem. 2015 Nov 2;16(16):2294-8. doi: 10.1002/cbic.201500386. Epub 2015 Oct 2.
8
Cytotoxic alkylated hydroquinone, phenol, and cyclohexenone derivatives from Aspergillus violaceofuscus Gasperini.
J Nat Prod. 2014 May 23;77(5):1236-40. doi: 10.1021/np401017g. Epub 2014 May 1.
9
Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger.
Chem Biol. 2014 Apr 24;21(4):519-529. doi: 10.1016/j.chembiol.2014.01.013. Epub 2014 Mar 27.
10
Navigating the fungal polyketide chemical space: from genes to molecules.
J Org Chem. 2012 Nov 16;77(22):9933-53. doi: 10.1021/jo301592k. Epub 2012 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验