Suppr超能文献

产电菌细胞色素 OmcZs 结合核黄素:对细胞外电子转移的影响。

Geobacter cytochrome OmcZs binds riboflavin: implications for extracellular electron transfer.

机构信息

School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America.

出版信息

Nanotechnology. 2020 Mar 20;31(12):124001. doi: 10.1088/1361-6528/ab5de6. Epub 2019 Dec 2.

Abstract

Geobacter sulfurreducens is an important model organism for understanding extracellular electron transfer (EET), i.e. transfer of electrons from the cell's interior (quinone pool) to an extracellular substrate. This exoelectrogenic functionality can be exploited in bioelectrochemical applications. Nonetheless, key questions remain regarding the mechanisms of this functionality. G. sulfurreducens has been hypothesized to employ both multi-heme cytochromes and soluble, small molecule redox shuttles, as the final, redox-active species in EET. However, interactions between flavin redox shuttles and outer membrane, redox proteins in Geobacter have not been demonstrated. Herein, the heterologous expression and purification from E. coli of a soluble form of the multi-heme cytochrome OmcZs from G. sulfurreducens is reported. UV-vis absorption assays show that riboflavin can be reduced by OmcZs with concomitant oxidation of the protein. Fluorescence assays show that oxidized OmcZs and riboflavin interact with a binding constant of 34 μM. Furthermore, expression of OmcZs in E. coli enables EET in the host, and the current produced by these E. coli in a bioelectrochemical cell increases when riboflavin is introduced. These results support the hypothesis that OmcZs functions in EET by transiently binding riboflavin, which shuttles electrons from the outer membrane to the extracellular substrate.

摘要

脱硫弧菌是研究细胞外电子传递(EET)的重要模式生物,即电子从细胞内部(醌池)转移到细胞外基质。这种放电子功能可应用于生物电化学应用。然而,对于这种功能的机制,仍存在一些关键问题。脱硫弧菌被假设同时使用多血红素细胞色素和可溶性小分子氧化还原穿梭物作为 EET 中的最终氧化还原活性物质。然而,黄素氧化还原穿梭物与革兰氏阴性菌外膜、氧化还原蛋白之间的相互作用尚未得到证明。本文报道了从大肠杆菌中异源表达和纯化脱硫弧菌多血红素细胞色素 OmcZs 的可溶性形式。紫外可见吸收分析表明,核黄素可被 OmcZs 还原,同时蛋白被氧化。荧光分析表明,氧化的 OmcZs 和核黄素与结合常数 34 μM 相互作用。此外,在大肠杆菌中表达 OmcZs 可使宿主进行 EET,并且当引入核黄素时,这些大肠杆菌在生物电化学电池中产生的电流增加。这些结果支持了这样的假设,即 OmcZs 通过短暂结合核黄素来发挥 EET 的功能,核黄素将电子从外膜转移到细胞外基质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验