Suppr超能文献

细胞色素在胞外电子传递中的作用。

Cytochromes in Extracellular Electron Transfer in .

机构信息

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA

出版信息

Appl Environ Microbiol. 2021 Apr 27;87(10). doi: 10.1128/AEM.03109-20.

Abstract

Extracellular electron transfer (EET) is an important biological process in microbial physiology as found in dissimilatory metal oxidation/reduction and interspecies electron transfer in syntrophy in natural environments. EET also plays a critical role in microorganisms relevant to environmental biotechnology in metal-contaminated areas, metal corrosion, bioelectrochemical systems, and anaerobic digesters. species exist in a diversity of natural and artificial environments. One of the outstanding features of species is the capability of direct EET with solid electron donors and acceptors, including metals, electrodes, and other cells. Therefore, species are pivotal in environmental biogeochemical cycles and biotechnology applications. , a representative species, has been studied for direct EET as a model microorganism. employs electrically conductive pili (e-pili) and -type cytochromes for the direct EET. The biological function and electronics applications of the e-pili have been reviewed recently, and this review focuses on the cytochromes. species have an unusually large number of cytochromes encoded in their genomes. Unlike most other microorganisms, species localize multiple cytochromes in each subcellular fraction, outer membrane, periplasm, and inner membrane, as well as in the extracellular space, and differentially utilize these cytochromes for EET with various electron donors and acceptors. Some of the cytochromes are functionally redundant. Thus, the EET in is complicated. coordinates the cytochromes with other cellular components in the elaborate EET system to flourish in the environment.

摘要

细胞外电子传递(EET)是微生物生理学中的一个重要生物学过程,存在于自然环境中的异化金属氧化/还原和种间电子传递共生中。EET 在与环境生物技术相关的微生物中也起着至关重要的作用,这些微生物存在于金属污染区、金属腐蚀、生物电化学系统和厌氧消化器中。Shewanella 物种存在于多种自然和人工环境中。Shewanella 物种的一个突出特点是能够与固体电子供体和受体(包括金属、电极和其他细胞)直接进行 EET。因此,Shewanella 物种在环境生物地球化学循环和生物技术应用中起着关键作用。Shewanella oneidensis 是一种代表性的 Shewanella 物种,已被作为模型微生物研究其直接 EET。Shewanella oneidensis 采用导电菌毛(e-pili)和 -型细胞色素进行直接 EET。e-pili 的生物学功能和电子应用最近已经得到了综述,而本综述则重点介绍细胞色素。Shewanella 物种的基因组中编码了大量的细胞色素。与大多数其他微生物不同,Shewanella 物种将多种细胞色素定位于每个亚细胞部分、外膜、周质空间和内膜,以及细胞外空间,并根据其与各种电子供体和受体的直接 EET 来差异化地利用这些细胞色素。其中一些细胞色素具有功能冗余性。因此,Shewanella 中的 EET 较为复杂。Shewanella 协调细胞色素与 EET 系统中的其他细胞成分,以在环境中茁壮成长。

相似文献

1
Cytochromes in Extracellular Electron Transfer in .
Appl Environ Microbiol. 2021 Apr 27;87(10). doi: 10.1128/AEM.03109-20.
2
Direct Observation of Electrically Conductive Pili Emanating from .
mBio. 2021 Aug 31;12(4):e0220921. doi: 10.1128/mBio.02209-21.
5
The robustness of porin-cytochrome gene clusters from in extracellular electron transfer.
mBio. 2024 Sep 11;15(9):e0058024. doi: 10.1128/mbio.00580-24. Epub 2024 Aug 2.
6
Lack of Specificity in Periplasmic Electron Transfer.
J Bacteriol. 2022 Dec 20;204(12):e0032222. doi: 10.1128/jb.00322-22. Epub 2022 Nov 16.
7
Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
Annu Rev Microbiol. 2017 Sep 8;71:643-664. doi: 10.1146/annurev-micro-030117-020420. Epub 2017 Jul 11.
8
Cytochrome OmcS Is Not Essential for Extracellular Electron Transport via Conductive Pili in Geobacter sulfurreducens Strain KN400.
Appl Environ Microbiol. 2022 Jan 11;88(1):e0162221. doi: 10.1128/AEM.01622-21. Epub 2021 Oct 20.
9
Biomolecular Insights into Extracellular Pollutant Reduction Pathways of Using a Base Editor System.
Environ Sci Technol. 2022 Sep 6;56(17):12247-12256. doi: 10.1021/acs.est.2c02756. Epub 2022 Aug 12.

引用本文的文献

2
The soil-plant-human gut microbiome axis into perspective.
Nat Commun. 2025 Aug 20;16(1):7748. doi: 10.1038/s41467-025-62989-z.
3
Prediction and validation of nanowire proteins in G20 using machine learning and feature engineering.
Comput Struct Biotechnol J. 2025 Apr 19;27:1706-1718. doi: 10.1016/j.csbj.2025.04.022. eCollection 2025.
4
Effects of soluble electron shuttles on microbial iron reduction and methanogenesis.
Appl Environ Microbiol. 2025 May 21;91(5):e0222224. doi: 10.1128/aem.02222-24. Epub 2025 Apr 25.
5
The Role of Anode Potential in Electromicrobiology.
Microorganisms. 2025 Mar 11;13(3):631. doi: 10.3390/microorganisms13030631.
6
The role of CsrA in controls the extracellular electron transfer and biofilm production in .
Front Microbiol. 2025 Mar 11;16:1534446. doi: 10.3389/fmicb.2025.1534446. eCollection 2025.
7
Electron transfer in biological systems.
J Biol Inorg Chem. 2024 Dec;29(7-8):641-683. doi: 10.1007/s00775-024-02076-8. Epub 2024 Oct 18.
8
Heme homeostasis and its regulation by hemoproteins in bacteria.
mLife. 2024 Jul 11;3(3):327-342. doi: 10.1002/mlf2.12120. eCollection 2024 Sep.
10
Nonelectroactive obtains extracellular electron transfer-capability after forming chimera with .
ISME Commun. 2024 Apr 25;4(1):ycae058. doi: 10.1093/ismeco/ycae058. eCollection 2024 Jan.

本文引用的文献

1
Microbial electrochemistry for bioremediation.
Environ Sci Ecotechnol. 2020 Jan 11;1:100013. doi: 10.1016/j.ese.2020.100013. eCollection 2020 Jan.
2
Cytochrome OmcS Is Not Essential for Extracellular Electron Transport via Conductive Pili in Geobacter sulfurreducens Strain KN400.
Appl Environ Microbiol. 2022 Jan 11;88(1):e0162221. doi: 10.1128/AEM.01622-21. Epub 2021 Oct 20.
3
Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions.
Trends Biotechnol. 2021 Sep;39(9):940-952. doi: 10.1016/j.tibtech.2020.12.005. Epub 2021 Jan 6.
4
The blind men and the filament: Understanding structures and functions of microbial nanowires.
Curr Opin Chem Biol. 2020 Dec;59:193-201. doi: 10.1016/j.cbpa.2020.08.004. Epub 2020 Oct 15.
5
Electric field stimulates production of highly conductive microbial OmcZ nanowires.
Nat Chem Biol. 2020 Oct;16(10):1136-1142. doi: 10.1038/s41589-020-0623-9. Epub 2020 Aug 17.
6
Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own.
J Bacteriol. 2020 Sep 23;202(20). doi: 10.1128/JB.00331-20.
7
The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.
Cell. 2020 Apr 30;181(3):665-673.e10. doi: 10.1016/j.cell.2020.03.032. Epub 2020 Apr 13.
8
Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing conditions reveals new key cytochromes involved.
Appl Microbiol Biotechnol. 2020 May;104(9):4059-4069. doi: 10.1007/s00253-020-10502-5. Epub 2020 Mar 16.
9
An Chassis for Production of Electrically Conductive Protein Nanowires.
ACS Synth Biol. 2020 Mar 20;9(3):647-654. doi: 10.1021/acssynbio.9b00506. Epub 2020 Mar 11.
10
A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):5074-5080. doi: 10.1073/pnas.1913463117. Epub 2020 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验