Suppr超能文献

酶中催化残基的功能与保守性的全球分析。

A global analysis of function and conservation of catalytic residues in enzymes.

作者信息

Ribeiro António J M, Tyzack Jonathan D, Borkakoti Neera, Holliday Gemma L, Thornton Janet M

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.

出版信息

J Biol Chem. 2020 Jan 10;295(2):314-324. doi: 10.1074/jbc.REV119.006289. Epub 2019 Dec 3.

Abstract

The catalytic residues of an enzyme comprise the amino acids located in the active center responsible for accelerating the enzyme-catalyzed reaction. These residues lower the activation energy of reactions by performing several catalytic functions. Decades of enzymology research has established general themes regarding the roles of specific residues in these catalytic reactions, but it has been more difficult to explore these roles in a more systematic way. Here, we review the data on the catalytic residues of 648 enzymes, as annotated in the Mechanism and Catalytic Site Atlas (M-CSA), and compare our results with those in previous studies. We structured this analysis around three key properties of the catalytic residues: amino acid type, catalytic function, and sequence conservation in homologous proteins. As expected, we observed that catalysis is mostly accomplished by a small set of residues performing a limited number of catalytic functions. Catalytic residues are typically highly conserved, but to a smaller degree in homologues that perform different reactions or are nonenzymes (pseudoenzymes). Cross-analysis yielded further insights revealing which residues perform particular functions and how often. We obtained more detailed specificity rules for certain functions by identifying the chemical group upon which the residue acts. Finally, we show the mutation tolerance of the catalytic residues based on their roles. The characterization of the catalytic residues, their functions, and conservation, as presented here, is key to understanding the impact of mutations in evolution, disease, and enzyme design. The tools developed for this analysis are available at the M-CSA website and allow for user specific analysis of the same data.

摘要

酶的催化残基包括位于活性中心负责加速酶催化反应的氨基酸。这些残基通过执行多种催化功能来降低反应的活化能。数十年的酶学研究已确立了特定残基在这些催化反应中作用的一般主题,但以更系统的方式探索这些作用一直较为困难。在此,我们回顾了《机制与催化位点图谱》(M-CSA)中注释的648种酶的催化残基数据,并将我们的结果与先前研究的结果进行比较。我们围绕催化残基的三个关键特性构建了这一分析:氨基酸类型、催化功能以及同源蛋白中的序列保守性。正如预期的那样,我们观察到催化作用大多由执行有限数量催化功能的一小部分残基完成。催化残基通常高度保守,但在执行不同反应的同源物或非酶(假酶)中保守程度较低。交叉分析产生了进一步的见解,揭示了哪些残基执行特定功能以及出现的频率。通过确定残基作用的化学基团,我们获得了某些功能更详细的特异性规则。最后,我们根据催化残基的作用展示了它们的突变耐受性。本文所呈现的催化残基及其功能和保守性的表征,是理解突变在进化、疾病和酶设计中的影响的关键。为该分析开发的工具可在M-CSA网站获取,并允许用户对相同数据进行特定分析。

相似文献

1
A global analysis of function and conservation of catalytic residues in enzymes.
J Biol Chem. 2020 Jan 10;295(2):314-324. doi: 10.1074/jbc.REV119.006289. Epub 2019 Dec 3.
2
Understanding the functional roles of amino acid residues in enzyme catalysis.
J Mol Biol. 2009 Jul 17;390(3):560-77. doi: 10.1016/j.jmb.2009.05.015. Epub 2009 May 15.
3
Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites.
Nucleic Acids Res. 2018 Jan 4;46(D1):D618-D623. doi: 10.1093/nar/gkx1012.
4
Analysis of catalytic residues in enzyme active sites.
J Mol Biol. 2002 Nov 15;324(1):105-21. doi: 10.1016/s0022-2836(02)01036-7.
5
An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
BMC Bioinformatics. 2015 Nov 4;16:359. doi: 10.1186/s12859-015-0807-6.
6
The chemistry of protein catalysis.
J Mol Biol. 2007 Oct 5;372(5):1261-77. doi: 10.1016/j.jmb.2007.07.034. Epub 2007 Aug 2.
7
The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes.
Nucleic Acids Res. 2014 Jan;42(Database issue):D485-9. doi: 10.1093/nar/gkt1243. Epub 2013 Dec 6.
8
Catalysing new reactions during evolution: economy of residues and mechanism.
J Mol Biol. 2003 Aug 22;331(4):829-60. doi: 10.1016/s0022-2836(03)00734-4.
9
Protein structure based prediction of catalytic residues.
BMC Bioinformatics. 2013 Feb 22;14:63. doi: 10.1186/1471-2105-14-63.
10
The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D129-33. doi: 10.1093/nar/gkh028.

引用本文的文献

2
Advances in sulfonyl exchange chemical biology: expanding druggable target space.
Chem Sci. 2025 May 6;16(23):10119-10140. doi: 10.1039/d5sc02647d. eCollection 2025 Jun 11.
4
Sequence and taxonomic feature evaluation facilitated the discovery of alcohol oxidases.
Synth Syst Biotechnol. 2025 Apr 22;10(3):907-915. doi: 10.1016/j.synbio.2025.04.014. eCollection 2025 Sep.
5
Measuring catalytic mechanism similarity - a new approach to study enzyme function and evolution.
FEBS J. 2025 Aug;292(16):4200-4210. doi: 10.1111/febs.70106. Epub 2025 Apr 22.
6
Purine Chemistry in the Early RNA World at the Origins of Life: From RNA and Nucleobases Lesions to Current Key Metabolic Routes.
Chembiochem. 2025 Jun 3;26(11):e202500035. doi: 10.1002/cbic.202500035. Epub 2025 Apr 16.
7
Identification of an Allene Warhead That Selectively Targets a Histidine Residue in the Oxidoreductase Enzyme DsbA.
ACS Med Chem Lett. 2025 Mar 22;16(4):625-630. doi: 10.1021/acsmedchemlett.5c00016. eCollection 2025 Apr 10.
9
Replicating PET Hydrolytic Activity by Positioning Active Sites with Smaller Synthetic Protein Scaffolds.
Adv Sci (Weinh). 2025 May;12(18):e2500859. doi: 10.1002/advs.202500859. Epub 2025 Mar 16.

本文引用的文献

1
funtrp: identifying protein positions for variation driven functional tuning.
Nucleic Acids Res. 2019 Dec 2;47(21):e142. doi: 10.1093/nar/gkz818.
2
Emerging concepts in pseudoenzyme classification, evolution, and signaling.
Sci Signal. 2019 Aug 13;12(594):eaat9797. doi: 10.1126/scisignal.aat9797.
3
CATH: expanding the horizons of structure-based functional annotations for genome sequences.
Nucleic Acids Res. 2019 Jan 8;47(D1):D280-D284. doi: 10.1093/nar/gky1097.
4
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
5
The Pfam protein families database in 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.
6
Directed Evolution of Protein Catalysts.
Annu Rev Biochem. 2018 Jun 20;87:131-157. doi: 10.1146/annurev-biochem-062917-012034. Epub 2018 Mar 1.
8
Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites.
Nucleic Acids Res. 2018 Jan 4;46(D1):D618-D623. doi: 10.1093/nar/gkx1012.
9
Live and let die: insights into pseudoenzyme mechanisms from structure.
Curr Opin Struct Biol. 2017 Dec;47:95-104. doi: 10.1016/j.sbi.2017.07.004. Epub 2017 Aug 5.
10
Reconstructing Ancient Proteins to Understand the Causes of Structure and Function.
Annu Rev Biophys. 2017 May 22;46:247-269. doi: 10.1146/annurev-biophys-070816-033631. Epub 2017 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验