Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States.
The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.
Inorg Chem. 2019 Dec 16;58(24):16761-16770. doi: 10.1021/acs.inorgchem.9b02923. Epub 2019 Dec 5.
High-valent metal-hydroxide species have been implicated as key intermediates in hydroxylation chemistry catalyzed by heme monooxygenases such as the cytochrome P450s. However, in some classes of P450s, a bifurcation from the typical oxygen rebound pathway is observed, wherein the Fe(OH)(porphyrin) species carries out a net hydrogen atom transfer reaction to form alkene metabolites. In this work, we examine the hydrogen atom transfer (HAT) reactivity of Fe(OH)(ttppc) (), ttppc = 5,10,15-tris(2,4,6-triphenyl)-phenyl corrole, toward substituted phenol derivatives. The iron hydroxide complex reacts with a series of -substituted 2,6-di--butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, Et, H, Ac), with second-order rate constants = 3.6(1)-1.21(3) × 10 M s and yielding linear Hammett and Marcus plot correlations. It is concluded that the rate-determining step for O-H cleavage occurs through a concerted HAT mechanism, based on mechanistic analyses that include a KIE = 2.9(1) and DFT calculations. Comparison of the HAT reactivity of to the analogous Mn complex, Mn(OH)(ttppc), where only the central metal ion is different, indicates a faster HAT reaction and a steeper Hammett slope for . The O-H bond dissociation energy (BDE) of the M(HO-H) complexes were estimated from a kinetic analysis to be 85 and 89 kcal mol for Mn and Fe, respectively. These estimated BDEs are closely reproduced by DFT calculations and are discussed in the context of how they influence the overall H atom transfer reactivity.
高价金属-氢氧物种被认为是血红素单加氧酶催化的羟化反应中的关键中间体,如细胞色素 P450 等。然而,在某些类别的 P450 中,观察到了典型氧回弹途径的分支,其中 Fe(OH)(卟啉)物种进行净氢原子转移反应,形成烯烃代谢物。在这项工作中,我们研究了 Fe(OH)(ttppc)( ,ttppc = 5,10,15-三(2,4,6-三苯基)-苯基卟啉)对取代苯酚衍生物的氢原子转移(HAT)反应性。铁氢氧化物配合物 与一系列取代的 2,6-二叔丁基苯酚衍生物(4-X-2,6-DTBP; X = OMe、Me、Et、H、Ac)反应,二级速率常数 = 3.6(1)-1.21(3)×10 M s,并产生线性哈梅特和马库斯图的相关性。根据包括 KIE = 2.9(1)和 DFT 计算在内的机理分析,得出结论,O-H 断裂的速控步骤是通过协同 HAT 机制发生的。将 与类似的 Mn 配合物 Mn(OH)(ttppc)的 HAT 反应性进行比较,其中只有中心金属离子不同,表明 具有更快的 HAT 反应和更陡的哈梅特斜率。通过动力学分析估计 M(HO-H)配合物的 O-H 键离解能(BDE)分别为 Mn 和 Fe 的 85 和 89 kcal mol。这些估计的 BDE 通过 DFT 计算得到了很好的重现,并在影响整体 H 原子转移反应性的背景下进行了讨论。