Suppr超能文献

鉴定小细胞神经内分泌前列腺癌的治疗弱点。

Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer.

机构信息

Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington.

Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.

出版信息

Clin Cancer Res. 2020 Apr 1;26(7):1667-1677. doi: 10.1158/1078-0432.CCR-19-0775. Epub 2019 Dec 5.

Abstract

PURPOSE

Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets.

EXPERIMENTAL DESIGN

We generated whole transcriptome RNA-sequencing data from AR-active prostate cancers (ARPCs) and SCNPCs from tumors collected at rapid autopsy and two other neuroendocrine carcinomas, Merkel cell carcinoma (MCC), and small-cell lung cancer. We performed cross-tumor comparisons to identify conserved patterns of expression of druggable targets. We tested inhibitors to highly upregulated drug targets in a panel of prostate cancer cell lines and patient-derived xenograft (PDX) models.

RESULTS

We identified BCL2 as highly upregulated in SCNPC compared with ARPC. Inhibitors targeting BCL2 induced apoptotic cell death in SCNPC cell lines at nanomolar concentrations while ARPC cell lines were resistant. Treatment with the BCL2 inhibitor navitoclax leads to a reduction of growth of SCNPC PDX tumors , whereas ARPC PDX models were more resistant. We identified Wee1 as a second druggable target upregulated in SCNPC. Treatment with the combination of navitoclax and the Wee1 inhibitor AZD-1775 repressed the growth of SCNPC PDX resistant to single-agent BCL2 inhibitors.

CONCLUSIONS

The combination of BCL2 and Wee1 inhibition presents a novel therapeutic strategy for the treatment of SCNPC.

摘要

目的

小细胞神经内分泌前列腺癌(SCNPC)表现出侵袭性的临床病程,并且在对强效雄激素受体(AR)拮抗剂产生耐药后,其发病率似乎在增加。目前,治疗选择有限,并且几乎没有可用的模型系统来确定新的治疗方法。我们试图评估 SCNPC 与其他侵袭性神经内分泌癌之间的共同性,以确定治疗靶点。

实验设计

我们从快速尸检和另外两种神经内分泌癌(Merkel 细胞癌[MCC]和小细胞肺癌)的肿瘤中生成了 AR 活性前列腺癌(ARPC)和 SCNPC 的全转录组 RNA 测序数据。我们进行了跨肿瘤比较,以确定可药物靶标的保守表达模式。我们在一组前列腺癌细胞系和患者来源的异种移植(PDX)模型中测试了针对高度上调药物靶标的抑制剂。

结果

与 ARPC 相比,我们发现 SCNPC 中 BCL2 高度上调。针对 BCL2 的抑制剂以纳摩尔浓度在 SCNPC 细胞系中诱导细胞凋亡死亡,而 ARPC 细胞系则具有抗性。用 BCL2 抑制剂 navitoclax 治疗会导致 SCNPC PDX 肿瘤的生长减少,而 ARPC PDX 模型则更具抗性。我们确定了 Wee1 作为另一个在 SCNPC 中上调的可药物靶标。用 navitoclax 和 Wee1 抑制剂 AZD-1775 的联合治疗抑制了对单一 BCL2 抑制剂耐药的 SCNPC PDX 的生长。

结论

BCL2 和 Wee1 抑制的联合治疗为治疗 SCNPC 提供了一种新的治疗策略。

相似文献

1
Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer.
Clin Cancer Res. 2020 Apr 1;26(7):1667-1677. doi: 10.1158/1078-0432.CCR-19-0775. Epub 2019 Dec 5.
2
Targeting the fibroblast growth factor pathway in molecular subtypes of castration-resistant prostate cancer.
Prostate. 2024 Jan;84(1):100-110. doi: 10.1002/pros.24630. Epub 2023 Oct 5.
3
RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer.
Cancer Res. 2021 Sep 15;81(18):4736-4750. doi: 10.1158/0008-5472.CAN-21-0307. Epub 2021 Jul 26.
4
Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature.
PLoS One. 2021 Jan 20;16(1):e0245602. doi: 10.1371/journal.pone.0245602. eCollection 2021.
7
Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas.
Epigenetics. 2016 Mar 3;11(3):184-93. doi: 10.1080/15592294.2016.1146851. Epub 2016 Feb 18.
10
Targeting RET Kinase in Neuroendocrine Prostate Cancer.
Mol Cancer Res. 2020 Aug;18(8):1176-1188. doi: 10.1158/1541-7786.MCR-19-1245. Epub 2020 May 27.

引用本文的文献

2
BH3 mimetics targeting BCL-XL have efficacy in solid tumors with RB1 loss and replication stress.
Nat Commun. 2025 May 28;16(1):4931. doi: 10.1038/s41467-025-60238-x.
3
Phase Ib Study of Enzalutamide with Venetoclax in Patients with Metastatic Castration-Resistant Prostate Cancer.
medRxiv. 2025 Apr 22:2025.04.22.25326208. doi: 10.1101/2025.04.22.25326208.
6
BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity.
J Clin Invest. 2024 Sep 17;134(18):e179998. doi: 10.1172/JCI179998.
7
Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data.
Expert Opin Drug Discov. 2024 Jul;19(7):841-853. doi: 10.1080/17460441.2024.2365370. Epub 2024 Jun 11.
8
The yin and yang of chromosomal instability in prostate cancer.
Nat Rev Urol. 2024 Jun;21(6):357-372. doi: 10.1038/s41585-023-00845-9. Epub 2024 Feb 2.
9
Synthetic lethal combination of CHK1 and WEE1 inhibition for treatment of castration-resistant prostate cancer.
Oncogene. 2024 Mar;43(11):789-803. doi: 10.1038/s41388-024-02939-z. Epub 2024 Jan 25.
10
UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas.
Cell Rep Med. 2024 Feb 20;5(2):101381. doi: 10.1016/j.xcrm.2023.101381. Epub 2024 Jan 19.

本文引用的文献

2
Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer.
Sci Transl Med. 2019 Mar 20;11(484). doi: 10.1126/scitranslmed.aav0891.
4
A Human Adult Stem Cell Signature Marks Aggressive Variants across Epithelial Cancers.
Cell Rep. 2018 Sep 18;24(12):3353-3366.e5. doi: 10.1016/j.celrep.2018.08.062.
5
Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses.
Nat Commun. 2018 Sep 6;9(1):3600. doi: 10.1038/s41467-018-06067-7.
8
Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4473-E4482. doi: 10.1073/pnas.1802354115. Epub 2018 Apr 23.
9
An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance.
Cell. 2018 Apr 19;173(3):649-664.e20. doi: 10.1016/j.cell.2018.03.052.
10
The Expanding World of N-MYC-Driven Tumors.
Cancer Discov. 2018 Feb;8(2):150-163. doi: 10.1158/2159-8290.CD-17-0273. Epub 2018 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验