CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China.
Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China.
Sci Adv. 2019 Nov 27;5(11):eaax7525. doi: 10.1126/sciadv.aax7525. eCollection 2019 Nov.
Metabolic reprogramming has emerged as a key regulator of cell fate decisions. Roles of glucose and amino acid metabolism have been extensively documented, whereas lipid metabolism in pluripotency remains largely unexplored. Using a high-coverage lipidomics approach, we reveal dynamic changes in phospholipids occurring during reprogramming and show that the CDP-ethanolamine (CDP-Etn) pathway for phosphatidylethanolamine (PE) synthesis is required at the early stage of reprogramming. Mechanistically, the CDP-Etn pathway inhibits NF-κB signaling and mesenchymal genes in a Pebp1-dependent manner, without affecting autophagy, resulting in accelerated mesenchymal-to-epithelial transition (MET) and enhanced reprogramming. Furthermore, PE binding to Pebp1 enhances the interaction of Pebp1 with IKKα/β and reduces the phosphorylation of IKKα/β. The CDP-Etn-Pebp1 axis is associated with EMT/MET in hepatocyte differentiation, indicating that Etn/PE is a broad-spectrum MET/EMT-regulating metabolite. Collectively, our study reveals an unforeseen connection between phospholipids, cell migration, and pluripotency and highlights the importance of phospholipids in cell fate transitions.
代谢重编程已成为细胞命运决定的关键调控因子。葡萄糖和氨基酸代谢的作用已被广泛证实,而多能性中的脂质代谢仍在很大程度上未被探索。我们采用高覆盖脂质组学方法,揭示了重编程过程中磷脂的动态变化,并表明 CDP-乙醇胺(CDP-Etn)途径对于磷脂酰乙醇胺(PE)的合成在重编程的早期阶段是必需的。在机制上,CDP-Etn 途径通过 Pebp1 依赖性方式抑制 NF-κB 信号和间充质基因,而不影响自噬,从而加速间充质到上皮的转变(MET)和增强重编程。此外,PE 与 Pebp1 的结合增强了 Pebp1 与 IKKα/β 的相互作用,并降低了 IKKα/β 的磷酸化。CDP-Etn-Pebp1 轴与肝细胞分化中的 EMT/MET 相关,表明 Etn/PE 是一种广谱的 MET/EMT 调节代谢物。总之,我们的研究揭示了磷脂、细胞迁移和多能性之间以前未预料到的联系,并强调了磷脂在细胞命运转变中的重要性。