Suppr超能文献

功能不同的Mx1+αSMA+骨膜骨骼干细胞的鉴定

Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells.

作者信息

Ortinau Laura C, Wang Hamilton, Lei Kevin, Deveza Lorenzo, Jeong Youngjae, Hara Yannis, Grafe Ingo, Rosenfeld Scott B, Lee Dongjun, Lee Brendan, Scadden David T, Park Dongsu

机构信息

Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

出版信息

Cell Stem Cell. 2019 Dec 5;25(6):784-796.e5. doi: 10.1016/j.stem.2019.11.003.

Abstract

The periosteum is critical for bone maintenance and healing. However, the in vivo identity and specific regulatory mechanisms of adult periosteum-resident skeletal stem cells are unknown. Here, we report animal models that selectively and durably label postnatal Mx1+αSMA+ periosteal stem cells (P-SSCs) and establish that P-SSCs are a long-term repopulating, functionally distinct SSC subset responsible for lifelong generation of periosteal osteoblasts. P-SSCs rapidly migrate toward an injury site, supply osteoblasts and chondrocytes, and recover new periosteum. Notably, P-SSCs specifically express CCL5 receptors, CCR3 and CCR5. Real-time intravital imaging revealed that the treatment with CCL5 induces P-SSC migration in vivo and bone healing, while CCL5/CCR5 deletion, CCR5 inhibition, or local P-SSC ablation reduces osteoblast number and delays bone healing. Human periosteal cells express CCR5 and undergo CCL5-mediated migration. Thus, the adult periosteum maintains genetically distinct SSC subsets with a CCL5-dependent migratory mechanism required for bone maintenance and injury repair.

摘要

骨膜对于骨骼的维持和愈合至关重要。然而,成年骨膜驻留骨骼干细胞在体内的特性和具体调控机制尚不清楚。在此,我们报告了能够选择性且持久地标记出生后Mx1+αSMA+骨膜干细胞(P-SSCs)的动物模型,并证实P-SSCs是一个长期自我更新、功能独特的干细胞亚群,负责终生生成骨膜成骨细胞。P-SSCs能迅速向损伤部位迁移,提供成骨细胞和软骨细胞,并恢复新的骨膜。值得注意的是,P-SSCs特异性表达趋化因子配体5(CCL5)受体CCR3和CCR5。实时活体成像显示,CCL5处理可诱导P-SSCs在体内迁移并促进骨愈合,而CCL5/CCR5缺失、CCR5抑制或局部P-SSC消融会减少成骨细胞数量并延迟骨愈合。人骨膜细胞表达CCR5并经历CCL5介导的迁移。因此,成年骨膜通过一种依赖CCL5的迁移机制维持着基因上不同的干细胞亚群,这一机制对于骨骼维持和损伤修复是必需的。

相似文献

1
Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells.
Cell Stem Cell. 2019 Dec 5;25(6):784-796.e5. doi: 10.1016/j.stem.2019.11.003.
4
Itm2a expression marks periosteal skeletal stem cells that contribute to bone fracture healing.
J Clin Invest. 2024 Sep 3;134(17):e176528. doi: 10.1172/JCI176528.
5
Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair.
JCI Insight. 2024 Nov 22;9(22):e173831. doi: 10.1172/jci.insight.173831.
6
Nestin-GFP transgene labels skeletal progenitors in the periosteum.
Bone. 2020 Apr;133:115259. doi: 10.1016/j.bone.2020.115259. Epub 2020 Feb 6.
8
Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair.
Cell Stem Cell. 2022 Nov 3;29(11):1547-1561.e6. doi: 10.1016/j.stem.2022.10.002. Epub 2022 Oct 21.
9
αSMA Osteoprogenitor Cells Contribute to the Increase in Osteoblast Numbers in Response to Mechanical Loading.
Calcif Tissue Int. 2020 Feb;106(2):208-217. doi: 10.1007/s00223-019-00624-y. Epub 2019 Oct 31.
10
Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone.
Bone. 2017 Oct;103:12-19. doi: 10.1016/j.bone.2017.06.008. Epub 2017 Jun 13.

引用本文的文献

2
EGR1 Promotes Craniofacial Bone Regeneration via Activation of ALPL⁺PDGFD⁺ Periosteal Stem Cells.
Adv Sci (Weinh). 2025 Aug;12(30):e10243. doi: 10.1002/advs.202410243. Epub 2025 Jul 12.
5
Comprehensive bioinformatics analysis uncover molecular pathways shared between osteoarthritis and atherosclerosis.
BMC Musculoskelet Disord. 2025 May 7;26(1):449. doi: 10.1186/s12891-025-08563-6.
6
Identification and function of periosteal skeletal stem cells in skeletal development, homeostasis, and disease.
J Orthop Translat. 2025 Mar 14;51:177-186. doi: 10.1016/j.jot.2025.01.010. eCollection 2025 Mar.
7
Tenascin-C promotes bone regeneration via inflammatory macrophages.
Cell Death Differ. 2025 Apr;32(4):763-775. doi: 10.1038/s41418-024-01429-9. Epub 2025 Jan 10.
8
Rejuvenating aged osteoprogenitors for bone repair.
Elife. 2024 Dec 18;13:RP104068. doi: 10.7554/eLife.104068.
10
Identification of LRP1+CD13+ human periosteal stem cells that require LRP1 for bone repair.
JCI Insight. 2024 Nov 22;9(22):e173831. doi: 10.1172/jci.insight.173831.

本文引用的文献

1
Discovery of a periosteal stem cell mediating intramembranous bone formation.
Nature. 2018 Oct;562(7725):133-139. doi: 10.1038/s41586-018-0554-8. Epub 2018 Sep 24.
2
Origin of Reparative Stem Cells in Fracture Healing.
Curr Osteoporos Rep. 2018 Aug;16(4):490-503. doi: 10.1007/s11914-018-0458-4.
5
Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration.
Stem Cells. 2017 Jun;35(6):1446-1460. doi: 10.1002/stem.2614. Epub 2017 Apr 3.
6
Axin2-expressing cells execute regeneration after skeletal injury.
Sci Rep. 2016 Nov 17;6:36524. doi: 10.1038/srep36524.
7
Osteogenic potential of alpha smooth muscle actin expressing muscle resident progenitor cells.
Bone. 2016 Mar;84:69-77. doi: 10.1016/j.bone.2015.12.010. Epub 2015 Dec 22.
8
The suture provides a niche for mesenchymal stem cells of craniofacial bones.
Nat Cell Biol. 2015 Apr;17(4):386-96. doi: 10.1038/ncb3139. Epub 2015 Mar 23.
9
Skeletal stem cells.
Development. 2015 Mar 15;142(6):1023-7. doi: 10.1242/dev.102210.
10
Identification and specification of the mouse skeletal stem cell.
Cell. 2015 Jan 15;160(1-2):285-98. doi: 10.1016/j.cell.2014.12.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验